![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chshi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
chshii | ⊢ 𝐻 ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
2 | chsh 31253 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Sℋ csh 30957 Cℋ cch 30958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fv 6571 df-ov 7434 df-ch 31250 |
This theorem is referenced by: chssii 31260 helsh 31274 h0elsh 31285 hhsscms 31307 hhssbnOLD 31308 chocunii 31330 shsleji 31399 shjshcli 31405 pjhthlem1 31420 pjhthlem2 31421 omlsii 31432 ococi 31434 pjoc1i 31460 chne0i 31482 chocini 31483 chjcli 31486 chsleji 31487 chseli 31488 chunssji 31496 chjcomi 31497 chub1i 31498 chlubi 31500 chlej1i 31502 chlej2i 31503 h1de2bi 31583 h1de2ctlem 31584 spansnpji 31607 spanunsni 31608 h1datomi 31610 pjoml2i 31614 qlaxr3i 31665 osumi 31671 osumcor2i 31673 spansnji 31675 spansnm0i 31679 nonbooli 31680 spansncvi 31681 5oai 31690 3oalem2 31692 3oalem5 31695 3oalem6 31696 pjaddii 31704 pjmulii 31706 pjss2i 31709 pjssmii 31710 pj0i 31722 pjocini 31727 pjjsi 31729 pjpythi 31751 mayete3i 31757 pjnmopi 32177 pjimai 32205 pjclem4 32228 pj3si 32236 sto1i 32265 stlei 32269 strlem1 32279 hatomici 32388 hatomistici 32391 atomli 32411 chirredlem3 32421 sumdmdii 32444 sumdmdlem 32447 sumdmdlem2 32448 |
Copyright terms: Public domain | W3C validator |