| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chshi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chshii | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
| 2 | chsh 31186 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Sℋ csh 30890 Cℋ cch 30891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fv 6494 df-ov 7356 df-ch 31183 |
| This theorem is referenced by: chssii 31193 helsh 31207 h0elsh 31218 hhsscms 31240 hhssbnOLD 31241 chocunii 31263 shsleji 31332 shjshcli 31338 pjhthlem1 31353 pjhthlem2 31354 omlsii 31365 ococi 31367 pjoc1i 31393 chne0i 31415 chocini 31416 chjcli 31419 chsleji 31420 chseli 31421 chunssji 31429 chjcomi 31430 chub1i 31431 chlubi 31433 chlej1i 31435 chlej2i 31436 h1de2bi 31516 h1de2ctlem 31517 spansnpji 31540 spanunsni 31541 h1datomi 31543 pjoml2i 31547 qlaxr3i 31598 osumi 31604 osumcor2i 31606 spansnji 31608 spansnm0i 31612 nonbooli 31613 spansncvi 31614 5oai 31623 3oalem2 31625 3oalem5 31628 3oalem6 31629 pjaddii 31637 pjmulii 31639 pjss2i 31642 pjssmii 31643 pj0i 31655 pjocini 31660 pjjsi 31662 pjpythi 31684 mayete3i 31690 pjnmopi 32110 pjimai 32138 pjclem4 32161 pj3si 32169 sto1i 32198 stlei 32202 strlem1 32212 hatomici 32321 hatomistici 32324 atomli 32344 chirredlem3 32354 sumdmdii 32377 sumdmdlem 32380 sumdmdlem2 32381 |
| Copyright terms: Public domain | W3C validator |