| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chshi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chshii | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
| 2 | chsh 31126 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Sℋ csh 30830 Cℋ cch 30831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fv 6507 df-ov 7372 df-ch 31123 |
| This theorem is referenced by: chssii 31133 helsh 31147 h0elsh 31158 hhsscms 31180 hhssbnOLD 31181 chocunii 31203 shsleji 31272 shjshcli 31278 pjhthlem1 31293 pjhthlem2 31294 omlsii 31305 ococi 31307 pjoc1i 31333 chne0i 31355 chocini 31356 chjcli 31359 chsleji 31360 chseli 31361 chunssji 31369 chjcomi 31370 chub1i 31371 chlubi 31373 chlej1i 31375 chlej2i 31376 h1de2bi 31456 h1de2ctlem 31457 spansnpji 31480 spanunsni 31481 h1datomi 31483 pjoml2i 31487 qlaxr3i 31538 osumi 31544 osumcor2i 31546 spansnji 31548 spansnm0i 31552 nonbooli 31553 spansncvi 31554 5oai 31563 3oalem2 31565 3oalem5 31568 3oalem6 31569 pjaddii 31577 pjmulii 31579 pjss2i 31582 pjssmii 31583 pj0i 31595 pjocini 31600 pjjsi 31602 pjpythi 31624 mayete3i 31630 pjnmopi 32050 pjimai 32078 pjclem4 32101 pj3si 32109 sto1i 32138 stlei 32142 strlem1 32152 hatomici 32261 hatomistici 32264 atomli 32284 chirredlem3 32294 sumdmdii 32317 sumdmdlem 32320 sumdmdlem2 32321 |
| Copyright terms: Public domain | W3C validator |