| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chshi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chshii | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
| 2 | chsh 31244 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Sℋ csh 30948 Cℋ cch 30949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fv 6568 df-ov 7435 df-ch 31241 |
| This theorem is referenced by: chssii 31251 helsh 31265 h0elsh 31276 hhsscms 31298 hhssbnOLD 31299 chocunii 31321 shsleji 31390 shjshcli 31396 pjhthlem1 31411 pjhthlem2 31412 omlsii 31423 ococi 31425 pjoc1i 31451 chne0i 31473 chocini 31474 chjcli 31477 chsleji 31478 chseli 31479 chunssji 31487 chjcomi 31488 chub1i 31489 chlubi 31491 chlej1i 31493 chlej2i 31494 h1de2bi 31574 h1de2ctlem 31575 spansnpji 31598 spanunsni 31599 h1datomi 31601 pjoml2i 31605 qlaxr3i 31656 osumi 31662 osumcor2i 31664 spansnji 31666 spansnm0i 31670 nonbooli 31671 spansncvi 31672 5oai 31681 3oalem2 31683 3oalem5 31686 3oalem6 31687 pjaddii 31695 pjmulii 31697 pjss2i 31700 pjssmii 31701 pj0i 31713 pjocini 31718 pjjsi 31720 pjpythi 31742 mayete3i 31748 pjnmopi 32168 pjimai 32196 pjclem4 32219 pj3si 32227 sto1i 32256 stlei 32260 strlem1 32270 hatomici 32379 hatomistici 32382 atomli 32402 chirredlem3 32412 sumdmdii 32435 sumdmdlem 32438 sumdmdlem2 32439 |
| Copyright terms: Public domain | W3C validator |