![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chshi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
chshii | ⊢ 𝐻 ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
2 | chsh 31256 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Sℋ csh 30960 Cℋ cch 30961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fv 6581 df-ov 7451 df-ch 31253 |
This theorem is referenced by: chssii 31263 helsh 31277 h0elsh 31288 hhsscms 31310 hhssbnOLD 31311 chocunii 31333 shsleji 31402 shjshcli 31408 pjhthlem1 31423 pjhthlem2 31424 omlsii 31435 ococi 31437 pjoc1i 31463 chne0i 31485 chocini 31486 chjcli 31489 chsleji 31490 chseli 31491 chunssji 31499 chjcomi 31500 chub1i 31501 chlubi 31503 chlej1i 31505 chlej2i 31506 h1de2bi 31586 h1de2ctlem 31587 spansnpji 31610 spanunsni 31611 h1datomi 31613 pjoml2i 31617 qlaxr3i 31668 osumi 31674 osumcor2i 31676 spansnji 31678 spansnm0i 31682 nonbooli 31683 spansncvi 31684 5oai 31693 3oalem2 31695 3oalem5 31698 3oalem6 31699 pjaddii 31707 pjmulii 31709 pjss2i 31712 pjssmii 31713 pj0i 31725 pjocini 31730 pjjsi 31732 pjpythi 31754 mayete3i 31760 pjnmopi 32180 pjimai 32208 pjclem4 32231 pj3si 32239 sto1i 32268 stlei 32272 strlem1 32282 hatomici 32391 hatomistici 32394 atomli 32414 chirredlem3 32424 sumdmdii 32447 sumdmdlem 32450 sumdmdlem2 32451 |
Copyright terms: Public domain | W3C validator |