| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chshi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chshii | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
| 2 | chsh 31225 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Sℋ csh 30929 Cℋ cch 30930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fv 6497 df-ov 7358 df-ch 31222 |
| This theorem is referenced by: chssii 31232 helsh 31246 h0elsh 31257 hhsscms 31279 hhssbnOLD 31280 chocunii 31302 shsleji 31371 shjshcli 31377 pjhthlem1 31392 pjhthlem2 31393 omlsii 31404 ococi 31406 pjoc1i 31432 chne0i 31454 chocini 31455 chjcli 31458 chsleji 31459 chseli 31460 chunssji 31468 chjcomi 31469 chub1i 31470 chlubi 31472 chlej1i 31474 chlej2i 31475 h1de2bi 31555 h1de2ctlem 31556 spansnpji 31579 spanunsni 31580 h1datomi 31582 pjoml2i 31586 qlaxr3i 31637 osumi 31643 osumcor2i 31645 spansnji 31647 spansnm0i 31651 nonbooli 31652 spansncvi 31653 5oai 31662 3oalem2 31664 3oalem5 31667 3oalem6 31668 pjaddii 31676 pjmulii 31678 pjss2i 31681 pjssmii 31682 pj0i 31694 pjocini 31699 pjjsi 31701 pjpythi 31723 mayete3i 31729 pjnmopi 32149 pjimai 32177 pjclem4 32200 pj3si 32208 sto1i 32237 stlei 32241 strlem1 32251 hatomici 32360 hatomistici 32363 atomli 32383 chirredlem3 32393 sumdmdii 32416 sumdmdlem 32419 sumdmdlem2 32420 |
| Copyright terms: Public domain | W3C validator |