Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chshi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
chshii | ⊢ 𝐻 ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
2 | chsh 29487 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Sℋ csh 29191 Cℋ cch 29192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-ov 7258 df-ch 29484 |
This theorem is referenced by: chssii 29494 helsh 29508 h0elsh 29519 hhsscms 29541 hhssbnOLD 29542 chocunii 29564 shsleji 29633 shjshcli 29639 pjhthlem1 29654 pjhthlem2 29655 omlsii 29666 ococi 29668 pjoc1i 29694 chne0i 29716 chocini 29717 chjcli 29720 chsleji 29721 chseli 29722 chunssji 29730 chjcomi 29731 chub1i 29732 chlubi 29734 chlej1i 29736 chlej2i 29737 h1de2bi 29817 h1de2ctlem 29818 spansnpji 29841 spanunsni 29842 h1datomi 29844 pjoml2i 29848 qlaxr3i 29899 osumi 29905 osumcor2i 29907 spansnji 29909 spansnm0i 29913 nonbooli 29914 spansncvi 29915 5oai 29924 3oalem2 29926 3oalem5 29929 3oalem6 29930 pjaddii 29938 pjmulii 29940 pjss2i 29943 pjssmii 29944 pj0i 29956 pjocini 29961 pjjsi 29963 pjpythi 29985 mayete3i 29991 pjnmopi 30411 pjimai 30439 pjclem4 30462 pj3si 30470 sto1i 30499 stlei 30503 strlem1 30513 hatomici 30622 hatomistici 30625 atomli 30645 chirredlem3 30655 sumdmdii 30678 sumdmdlem 30681 sumdmdlem2 30682 |
Copyright terms: Public domain | W3C validator |