Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chshi.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
chshii | ⊢ 𝐻 ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
2 | chsh 29586 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Sℋ csh 29290 Cℋ cch 29291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fv 6441 df-ov 7278 df-ch 29583 |
This theorem is referenced by: chssii 29593 helsh 29607 h0elsh 29618 hhsscms 29640 hhssbnOLD 29641 chocunii 29663 shsleji 29732 shjshcli 29738 pjhthlem1 29753 pjhthlem2 29754 omlsii 29765 ococi 29767 pjoc1i 29793 chne0i 29815 chocini 29816 chjcli 29819 chsleji 29820 chseli 29821 chunssji 29829 chjcomi 29830 chub1i 29831 chlubi 29833 chlej1i 29835 chlej2i 29836 h1de2bi 29916 h1de2ctlem 29917 spansnpji 29940 spanunsni 29941 h1datomi 29943 pjoml2i 29947 qlaxr3i 29998 osumi 30004 osumcor2i 30006 spansnji 30008 spansnm0i 30012 nonbooli 30013 spansncvi 30014 5oai 30023 3oalem2 30025 3oalem5 30028 3oalem6 30029 pjaddii 30037 pjmulii 30039 pjss2i 30042 pjssmii 30043 pj0i 30055 pjocini 30060 pjjsi 30062 pjpythi 30084 mayete3i 30090 pjnmopi 30510 pjimai 30538 pjclem4 30561 pj3si 30569 sto1i 30598 stlei 30602 strlem1 30612 hatomici 30721 hatomistici 30724 atomli 30744 chirredlem3 30754 sumdmdii 30777 sumdmdlem 30780 sumdmdlem2 30781 |
Copyright terms: Public domain | W3C validator |