| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chshi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chshii | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
| 2 | chsh 31151 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Sℋ csh 30855 Cℋ cch 30856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fv 6538 df-ov 7406 df-ch 31148 |
| This theorem is referenced by: chssii 31158 helsh 31172 h0elsh 31183 hhsscms 31205 hhssbnOLD 31206 chocunii 31228 shsleji 31297 shjshcli 31303 pjhthlem1 31318 pjhthlem2 31319 omlsii 31330 ococi 31332 pjoc1i 31358 chne0i 31380 chocini 31381 chjcli 31384 chsleji 31385 chseli 31386 chunssji 31394 chjcomi 31395 chub1i 31396 chlubi 31398 chlej1i 31400 chlej2i 31401 h1de2bi 31481 h1de2ctlem 31482 spansnpji 31505 spanunsni 31506 h1datomi 31508 pjoml2i 31512 qlaxr3i 31563 osumi 31569 osumcor2i 31571 spansnji 31573 spansnm0i 31577 nonbooli 31578 spansncvi 31579 5oai 31588 3oalem2 31590 3oalem5 31593 3oalem6 31594 pjaddii 31602 pjmulii 31604 pjss2i 31607 pjssmii 31608 pj0i 31620 pjocini 31625 pjjsi 31627 pjpythi 31649 mayete3i 31655 pjnmopi 32075 pjimai 32103 pjclem4 32126 pj3si 32134 sto1i 32163 stlei 32167 strlem1 32177 hatomici 32286 hatomistici 32289 atomli 32309 chirredlem3 32319 sumdmdii 32342 sumdmdlem 32345 sumdmdlem2 32346 |
| Copyright terms: Public domain | W3C validator |