| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chshi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chshii | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
| 2 | chsh 31196 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Sℋ csh 30900 Cℋ cch 30901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fv 6484 df-ov 7344 df-ch 31193 |
| This theorem is referenced by: chssii 31203 helsh 31217 h0elsh 31228 hhsscms 31250 hhssbnOLD 31251 chocunii 31273 shsleji 31342 shjshcli 31348 pjhthlem1 31363 pjhthlem2 31364 omlsii 31375 ococi 31377 pjoc1i 31403 chne0i 31425 chocini 31426 chjcli 31429 chsleji 31430 chseli 31431 chunssji 31439 chjcomi 31440 chub1i 31441 chlubi 31443 chlej1i 31445 chlej2i 31446 h1de2bi 31526 h1de2ctlem 31527 spansnpji 31550 spanunsni 31551 h1datomi 31553 pjoml2i 31557 qlaxr3i 31608 osumi 31614 osumcor2i 31616 spansnji 31618 spansnm0i 31622 nonbooli 31623 spansncvi 31624 5oai 31633 3oalem2 31635 3oalem5 31638 3oalem6 31639 pjaddii 31647 pjmulii 31649 pjss2i 31652 pjssmii 31653 pj0i 31665 pjocini 31670 pjjsi 31672 pjpythi 31694 mayete3i 31700 pjnmopi 32120 pjimai 32148 pjclem4 32171 pj3si 32179 sto1i 32208 stlei 32212 strlem1 32222 hatomici 32331 hatomistici 32334 atomli 32354 chirredlem3 32364 sumdmdii 32387 sumdmdlem 32390 sumdmdlem2 32391 |
| Copyright terms: Public domain | W3C validator |