| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chshi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chshii | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
| 2 | chsh 31153 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Sℋ csh 30857 Cℋ cch 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fv 6519 df-ov 7390 df-ch 31150 |
| This theorem is referenced by: chssii 31160 helsh 31174 h0elsh 31185 hhsscms 31207 hhssbnOLD 31208 chocunii 31230 shsleji 31299 shjshcli 31305 pjhthlem1 31320 pjhthlem2 31321 omlsii 31332 ococi 31334 pjoc1i 31360 chne0i 31382 chocini 31383 chjcli 31386 chsleji 31387 chseli 31388 chunssji 31396 chjcomi 31397 chub1i 31398 chlubi 31400 chlej1i 31402 chlej2i 31403 h1de2bi 31483 h1de2ctlem 31484 spansnpji 31507 spanunsni 31508 h1datomi 31510 pjoml2i 31514 qlaxr3i 31565 osumi 31571 osumcor2i 31573 spansnji 31575 spansnm0i 31579 nonbooli 31580 spansncvi 31581 5oai 31590 3oalem2 31592 3oalem5 31595 3oalem6 31596 pjaddii 31604 pjmulii 31606 pjss2i 31609 pjssmii 31610 pj0i 31622 pjocini 31627 pjjsi 31629 pjpythi 31651 mayete3i 31657 pjnmopi 32077 pjimai 32105 pjclem4 32128 pj3si 32136 sto1i 32165 stlei 32169 strlem1 32179 hatomici 32288 hatomistici 32291 atomli 32311 chirredlem3 32321 sumdmdii 32344 sumdmdlem 32347 sumdmdlem2 32348 |
| Copyright terms: Public domain | W3C validator |