| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chshii | Structured version Visualization version GIF version | ||
| Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chshi.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| chshii | ⊢ 𝐻 ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chshi.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
| 2 | chsh 31210 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐻 ∈ Sℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Sℋ csh 30914 Cℋ cch 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fv 6544 df-ov 7413 df-ch 31207 |
| This theorem is referenced by: chssii 31217 helsh 31231 h0elsh 31242 hhsscms 31264 hhssbnOLD 31265 chocunii 31287 shsleji 31356 shjshcli 31362 pjhthlem1 31377 pjhthlem2 31378 omlsii 31389 ococi 31391 pjoc1i 31417 chne0i 31439 chocini 31440 chjcli 31443 chsleji 31444 chseli 31445 chunssji 31453 chjcomi 31454 chub1i 31455 chlubi 31457 chlej1i 31459 chlej2i 31460 h1de2bi 31540 h1de2ctlem 31541 spansnpji 31564 spanunsni 31565 h1datomi 31567 pjoml2i 31571 qlaxr3i 31622 osumi 31628 osumcor2i 31630 spansnji 31632 spansnm0i 31636 nonbooli 31637 spansncvi 31638 5oai 31647 3oalem2 31649 3oalem5 31652 3oalem6 31653 pjaddii 31661 pjmulii 31663 pjss2i 31666 pjssmii 31667 pj0i 31679 pjocini 31684 pjjsi 31686 pjpythi 31708 mayete3i 31714 pjnmopi 32134 pjimai 32162 pjclem4 32185 pj3si 32193 sto1i 32222 stlei 32226 strlem1 32236 hatomici 32345 hatomistici 32348 atomli 32368 chirredlem3 32378 sumdmdii 32401 sumdmdlem 32404 sumdmdlem2 32405 |
| Copyright terms: Public domain | W3C validator |