Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsgprod Structured version   Visualization version   GIF version

Theorem pwsgprod 40720
Description: Finite products in a power structure are taken componentwise. Compare pwsgsum 19759. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwsgprod.y 𝑌 = (𝑅s 𝐼)
pwsgprod.b 𝐵 = (Base‘𝑅)
pwsgprod.o 1 = (1r𝑌)
pwsgprod.m 𝑀 = (mulGrp‘𝑌)
pwsgprod.t 𝑇 = (mulGrp‘𝑅)
pwsgprod.i (𝜑𝐼𝑉)
pwsgprod.j (𝜑𝐽𝑊)
pwsgprod.r (𝜑𝑅 ∈ CRing)
pwsgprod.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
pwsgprod.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
Assertion
Ref Expression
pwsgprod (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑀   𝑦,𝑌   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem pwsgprod
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pwsgprod.y . . . . 5 𝑌 = (𝑅s 𝐼)
2 pwsgprod.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2736 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 pwsgprod.r . . . . 5 (𝜑𝑅 ∈ CRing)
5 pwsgprod.i . . . . 5 (𝜑𝐼𝑉)
6 pwsgprod.m . . . . . . 7 𝑀 = (mulGrp‘𝑌)
76, 3mgpbas 19902 . . . . . 6 (Base‘𝑌) = (Base‘𝑀)
8 pwsgprod.o . . . . . . 7 1 = (1r𝑌)
96, 8ringidval 19915 . . . . . 6 1 = (0g𝑀)
101pwscrng 20041 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑉) → 𝑌 ∈ CRing)
114, 5, 10syl2anc 584 . . . . . . 7 (𝜑𝑌 ∈ CRing)
126crngmgp 19972 . . . . . . 7 (𝑌 ∈ CRing → 𝑀 ∈ CMnd)
1311, 12syl 17 . . . . . 6 (𝜑𝑀 ∈ CMnd)
14 pwsgprod.j . . . . . 6 (𝜑𝐽𝑊)
154adantr 481 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝑅 ∈ CRing)
165adantr 481 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝐼𝑉)
17 pwsgprod.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1817anassrs 468 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1918an32s 650 . . . . . . . . 9 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
2019fmpttd 7063 . . . . . . . 8 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼𝐵)
211, 2, 3, 15, 16, 20pwselbasr 40719 . . . . . . 7 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
2221fmpttd 7063 . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
23 pwsgprod.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
247, 9, 13, 14, 22, 23gsumcl 19692 . . . . 5 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
251, 2, 3, 4, 5, 24pwselbas 17371 . . . 4 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))):𝐼𝐵)
2625ffnd 6669 . . 3 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
27 nfcv 2907 . . . . 5 𝑥𝑀
28 nfcv 2907 . . . . 5 𝑥 Σg
29 nfcv 2907 . . . . . 6 𝑥𝐽
30 nfmpt1 5213 . . . . . 6 𝑥(𝑥𝐼𝑈)
3129, 30nfmpt 5212 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
3227, 28, 31nfov 7387 . . . 4 𝑥(𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3332dffn5f 6913 . . 3 ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3426, 33sylib 217 . 2 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
35 simpr 485 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
36 eqid 2736 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3736fvmpt2 6959 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3835, 18, 37syl2an2r 683 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3938mpteq2dva 5205 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
4039oveq2d 7373 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑇 Σg (𝑦𝐽𝑈)))
4113adantr 481 . . . . 5 ((𝜑𝑥𝐼) → 𝑀 ∈ CMnd)
42 pwsgprod.t . . . . . . . . 9 𝑇 = (mulGrp‘𝑅)
4342crngmgp 19972 . . . . . . . 8 (𝑅 ∈ CRing → 𝑇 ∈ CMnd)
444, 43syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
4544cmnmndd 19586 . . . . . 6 (𝜑𝑇 ∈ Mnd)
4645adantr 481 . . . . 5 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
4714adantr 481 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
484crngringd 19977 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4948adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
505adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝐼𝑉)
511, 3, 6, 42, 49, 50, 35pwspjmhmmgpd 20043 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑀 MndHom 𝑇))
5221adantlr 713 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5323adantr 481 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
54 fveq1 6841 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
55 fveq1 6841 . . . . 5 (𝑎 = (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
567, 9, 41, 46, 47, 51, 52, 53, 54, 55gsummhm2 19716 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5740, 56eqtr3d 2778 . . 3 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽𝑈)) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5857mpteq2dva 5205 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
5934, 58eqtr4d 2779 1 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   class class class wbr 5105  cmpt 5188   Fn wfn 6491  cfv 6496  (class class class)co 7357   finSupp cfsupp 9305  Basecbs 17083   Σg cgsu 17322  s cpws 17328  Mndcmnd 18556  CMndccmn 19562  mulGrpcmgp 19896  1rcur 19913  Ringcrg 19964  CRingccrg 19965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-cntz 19097  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967
This theorem is referenced by:  evlsbagval  40736
  Copyright terms: Public domain W3C validator