Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsgprod Structured version   Visualization version   GIF version

Theorem pwsgprod 42532
Description: Finite products in a power structure are taken componentwise. Compare pwsgsum 19912. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwsgprod.y 𝑌 = (𝑅s 𝐼)
pwsgprod.b 𝐵 = (Base‘𝑅)
pwsgprod.o 1 = (1r𝑌)
pwsgprod.m 𝑀 = (mulGrp‘𝑌)
pwsgprod.t 𝑇 = (mulGrp‘𝑅)
pwsgprod.i (𝜑𝐼𝑉)
pwsgprod.j (𝜑𝐽𝑊)
pwsgprod.r (𝜑𝑅 ∈ CRing)
pwsgprod.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
pwsgprod.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
Assertion
Ref Expression
pwsgprod (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑀   𝑦,𝑌   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem pwsgprod
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pwsgprod.y . . . . 5 𝑌 = (𝑅s 𝐼)
2 pwsgprod.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2729 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 pwsgprod.r . . . . 5 (𝜑𝑅 ∈ CRing)
5 pwsgprod.i . . . . 5 (𝜑𝐼𝑉)
6 pwsgprod.m . . . . . . 7 𝑀 = (mulGrp‘𝑌)
76, 3mgpbas 20054 . . . . . 6 (Base‘𝑌) = (Base‘𝑀)
8 pwsgprod.o . . . . . . 7 1 = (1r𝑌)
96, 8ringidval 20092 . . . . . 6 1 = (0g𝑀)
101pwscrng 20235 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑉) → 𝑌 ∈ CRing)
114, 5, 10syl2anc 584 . . . . . . 7 (𝜑𝑌 ∈ CRing)
126crngmgp 20150 . . . . . . 7 (𝑌 ∈ CRing → 𝑀 ∈ CMnd)
1311, 12syl 17 . . . . . 6 (𝜑𝑀 ∈ CMnd)
14 pwsgprod.j . . . . . 6 (𝜑𝐽𝑊)
154adantr 480 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝑅 ∈ CRing)
165adantr 480 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝐼𝑉)
17 pwsgprod.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1817anassrs 467 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1918an32s 652 . . . . . . . . 9 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
2019fmpttd 7087 . . . . . . . 8 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼𝐵)
211, 2, 3, 15, 16, 20pwselbasr 42531 . . . . . . 7 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
2221fmpttd 7087 . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
23 pwsgprod.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
247, 9, 13, 14, 22, 23gsumcl 19845 . . . . 5 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
251, 2, 3, 4, 5, 24pwselbas 17452 . . . 4 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))):𝐼𝐵)
2625ffnd 6689 . . 3 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
27 nfcv 2891 . . . . 5 𝑥𝑀
28 nfcv 2891 . . . . 5 𝑥 Σg
29 nfcv 2891 . . . . . 6 𝑥𝐽
30 nfmpt1 5206 . . . . . 6 𝑥(𝑥𝐼𝑈)
3129, 30nfmpt 5205 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
3227, 28, 31nfov 7417 . . . 4 𝑥(𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3332dffn5f 6932 . . 3 ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3426, 33sylib 218 . 2 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
35 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
36 eqid 2729 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3736fvmpt2 6979 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3835, 18, 37syl2an2r 685 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3938mpteq2dva 5200 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
4039oveq2d 7403 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑇 Σg (𝑦𝐽𝑈)))
4113adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑀 ∈ CMnd)
42 pwsgprod.t . . . . . . . . 9 𝑇 = (mulGrp‘𝑅)
4342crngmgp 20150 . . . . . . . 8 (𝑅 ∈ CRing → 𝑇 ∈ CMnd)
444, 43syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
4544cmnmndd 19734 . . . . . 6 (𝜑𝑇 ∈ Mnd)
4645adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
4714adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
484crngringd 20155 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4948adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
505adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐼𝑉)
511, 3, 6, 42, 49, 50, 35pwspjmhmmgpd 20237 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑀 MndHom 𝑇))
5221adantlr 715 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5323adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
54 fveq1 6857 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
55 fveq1 6857 . . . . 5 (𝑎 = (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
567, 9, 41, 46, 47, 51, 52, 53, 54, 55gsummhm2 19869 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5740, 56eqtr3d 2766 . . 3 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽𝑈)) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5857mpteq2dva 5200 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
5934, 58eqtr4d 2767 1 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cmpt 5188   Fn wfn 6506  cfv 6511  (class class class)co 7387   finSupp cfsupp 9312  Basecbs 17179   Σg cgsu 17403  s cpws 17409  Mndcmnd 18661  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145
This theorem is referenced by:  evlsvvval  42551
  Copyright terms: Public domain W3C validator