Step | Hyp | Ref
| Expression |
1 | | pwsgprod.y |
. . . . 5
⊢ 𝑌 = (𝑅 ↑s 𝐼) |
2 | | pwsgprod.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
3 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑌) =
(Base‘𝑌) |
4 | | pwsgprod.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
5 | | pwsgprod.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
6 | | pwsgprod.m |
. . . . . . 7
⊢ 𝑀 = (mulGrp‘𝑌) |
7 | 6, 3 | mgpbas 19641 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑀) |
8 | | pwsgprod.o |
. . . . . . 7
⊢ 1 =
(1r‘𝑌) |
9 | 6, 8 | ringidval 19654 |
. . . . . 6
⊢ 1 =
(0g‘𝑀) |
10 | 1 | pwscrng 19771 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ CRing) |
11 | 4, 5, 10 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ CRing) |
12 | 6 | crngmgp 19706 |
. . . . . . 7
⊢ (𝑌 ∈ CRing → 𝑀 ∈ CMnd) |
13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ CMnd) |
14 | | pwsgprod.j |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ 𝑊) |
15 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → 𝑅 ∈ CRing) |
16 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → 𝐼 ∈ 𝑉) |
17 | | pwsgprod.f |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) |
18 | 17 | anassrs 467 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑈 ∈ 𝐵) |
19 | 18 | an32s 648 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑈 ∈ 𝐵) |
20 | 19 | fmpttd 6971 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈):𝐼⟶𝐵) |
21 | 1, 2, 3, 15, 16, 20 | pwselbasr 40191 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ (Base‘𝑌)) |
22 | 21 | fmpttd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)):𝐽⟶(Base‘𝑌)) |
23 | | pwsgprod.w |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 1 ) |
24 | 7, 9, 13, 14, 22, 23 | gsumcl 19431 |
. . . . 5
⊢ (𝜑 → (𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) ∈ (Base‘𝑌)) |
25 | 1, 2, 3, 4, 5, 24 | pwselbas 17117 |
. . . 4
⊢ (𝜑 → (𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))):𝐼⟶𝐵) |
26 | 25 | ffnd 6585 |
. . 3
⊢ (𝜑 → (𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) Fn 𝐼) |
27 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥𝑀 |
28 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥
Σg |
29 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥𝐽 |
30 | | nfmpt1 5178 |
. . . . . 6
⊢
Ⅎ𝑥(𝑥 ∈ 𝐼 ↦ 𝑈) |
31 | 29, 30 | nfmpt 5177 |
. . . . 5
⊢
Ⅎ𝑥(𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) |
32 | 27, 28, 31 | nfov 7285 |
. . . 4
⊢
Ⅎ𝑥(𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) |
33 | 32 | dffn5f 6822 |
. . 3
⊢ ((𝑀 Σg
(𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) Fn 𝐼 ↔ (𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥))) |
34 | 26, 33 | sylib 217 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥))) |
35 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
36 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐼 ↦ 𝑈) = (𝑥 ∈ 𝐼 ↦ 𝑈) |
37 | 36 | fvmpt2 6868 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑈 ∈ 𝐵) → ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥) = 𝑈) |
38 | 35, 18, 37 | syl2an2r 681 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥) = 𝑈) |
39 | 38 | mpteq2dva 5170 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐽 ↦ ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥)) = (𝑦 ∈ 𝐽 ↦ 𝑈)) |
40 | 39 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑇 Σg (𝑦 ∈ 𝐽 ↦ ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥))) = (𝑇 Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) |
41 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑀 ∈ CMnd) |
42 | | pwsgprod.t |
. . . . . . . . 9
⊢ 𝑇 = (mulGrp‘𝑅) |
43 | 42 | crngmgp 19706 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑇 ∈ CMnd) |
44 | 4, 43 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ CMnd) |
45 | 44 | cmnmndd 19324 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ Mnd) |
46 | 45 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑇 ∈ Mnd) |
47 | 14 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐽 ∈ 𝑊) |
48 | 4 | crngringd 19711 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
49 | 48 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ Ring) |
50 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑉) |
51 | 1, 3, 6, 42, 49, 50, 35 | pwspjmhmmgpd 40192 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎‘𝑥)) ∈ (𝑀 MndHom 𝑇)) |
52 | 21 | adantlr 711 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ (Base‘𝑌)) |
53 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 1 ) |
54 | | fveq1 6755 |
. . . . 5
⊢ (𝑎 = (𝑥 ∈ 𝐼 ↦ 𝑈) → (𝑎‘𝑥) = ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥)) |
55 | | fveq1 6755 |
. . . . 5
⊢ (𝑎 = (𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) → (𝑎‘𝑥) = ((𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥)) |
56 | 7, 9, 41, 46, 47, 51, 52, 53, 54, 55 | gsummhm2 19455 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑇 Σg (𝑦 ∈ 𝐽 ↦ ((𝑥 ∈ 𝐼 ↦ 𝑈)‘𝑥))) = ((𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥)) |
57 | 40, 56 | eqtr3d 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑇 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)) = ((𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥)) |
58 | 57 | mpteq2dva 5170 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑇 Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))‘𝑥))) |
59 | 34, 58 | eqtr4d 2781 |
1
⊢ (𝜑 → (𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑇 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |