Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsgprod Structured version   Visualization version   GIF version

Theorem pwsgprod 42534
Description: Finite products in a power structure are taken componentwise. Compare pwsgsum 19968. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwsgprod.y 𝑌 = (𝑅s 𝐼)
pwsgprod.b 𝐵 = (Base‘𝑅)
pwsgprod.o 1 = (1r𝑌)
pwsgprod.m 𝑀 = (mulGrp‘𝑌)
pwsgprod.t 𝑇 = (mulGrp‘𝑅)
pwsgprod.i (𝜑𝐼𝑉)
pwsgprod.j (𝜑𝐽𝑊)
pwsgprod.r (𝜑𝑅 ∈ CRing)
pwsgprod.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
pwsgprod.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
Assertion
Ref Expression
pwsgprod (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑀   𝑦,𝑌   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem pwsgprod
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pwsgprod.y . . . . 5 𝑌 = (𝑅s 𝐼)
2 pwsgprod.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2736 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 pwsgprod.r . . . . 5 (𝜑𝑅 ∈ CRing)
5 pwsgprod.i . . . . 5 (𝜑𝐼𝑉)
6 pwsgprod.m . . . . . . 7 𝑀 = (mulGrp‘𝑌)
76, 3mgpbas 20110 . . . . . 6 (Base‘𝑌) = (Base‘𝑀)
8 pwsgprod.o . . . . . . 7 1 = (1r𝑌)
96, 8ringidval 20148 . . . . . 6 1 = (0g𝑀)
101pwscrng 20291 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑉) → 𝑌 ∈ CRing)
114, 5, 10syl2anc 584 . . . . . . 7 (𝜑𝑌 ∈ CRing)
126crngmgp 20206 . . . . . . 7 (𝑌 ∈ CRing → 𝑀 ∈ CMnd)
1311, 12syl 17 . . . . . 6 (𝜑𝑀 ∈ CMnd)
14 pwsgprod.j . . . . . 6 (𝜑𝐽𝑊)
154adantr 480 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝑅 ∈ CRing)
165adantr 480 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝐼𝑉)
17 pwsgprod.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1817anassrs 467 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1918an32s 652 . . . . . . . . 9 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
2019fmpttd 7110 . . . . . . . 8 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼𝐵)
211, 2, 3, 15, 16, 20pwselbasr 42533 . . . . . . 7 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
2221fmpttd 7110 . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
23 pwsgprod.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
247, 9, 13, 14, 22, 23gsumcl 19901 . . . . 5 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
251, 2, 3, 4, 5, 24pwselbas 17508 . . . 4 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))):𝐼𝐵)
2625ffnd 6712 . . 3 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
27 nfcv 2899 . . . . 5 𝑥𝑀
28 nfcv 2899 . . . . 5 𝑥 Σg
29 nfcv 2899 . . . . . 6 𝑥𝐽
30 nfmpt1 5225 . . . . . 6 𝑥(𝑥𝐼𝑈)
3129, 30nfmpt 5224 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
3227, 28, 31nfov 7440 . . . 4 𝑥(𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3332dffn5f 6955 . . 3 ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3426, 33sylib 218 . 2 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
35 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
36 eqid 2736 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3736fvmpt2 7002 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3835, 18, 37syl2an2r 685 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3938mpteq2dva 5219 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
4039oveq2d 7426 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑇 Σg (𝑦𝐽𝑈)))
4113adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑀 ∈ CMnd)
42 pwsgprod.t . . . . . . . . 9 𝑇 = (mulGrp‘𝑅)
4342crngmgp 20206 . . . . . . . 8 (𝑅 ∈ CRing → 𝑇 ∈ CMnd)
444, 43syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
4544cmnmndd 19790 . . . . . 6 (𝜑𝑇 ∈ Mnd)
4645adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
4714adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
484crngringd 20211 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4948adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
505adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐼𝑉)
511, 3, 6, 42, 49, 50, 35pwspjmhmmgpd 20293 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑀 MndHom 𝑇))
5221adantlr 715 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5323adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
54 fveq1 6880 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
55 fveq1 6880 . . . . 5 (𝑎 = (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
567, 9, 41, 46, 47, 51, 52, 53, 54, 55gsummhm2 19925 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5740, 56eqtr3d 2773 . . 3 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽𝑈)) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5857mpteq2dva 5219 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
5934, 58eqtr4d 2774 1 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  cmpt 5206   Fn wfn 6531  cfv 6536  (class class class)co 7410   finSupp cfsupp 9378  Basecbs 17233   Σg cgsu 17459  s cpws 17465  Mndcmnd 18717  CMndccmn 19766  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  CRingccrg 20199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201
This theorem is referenced by:  evlsvvval  42553
  Copyright terms: Public domain W3C validator