Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsgprod Structured version   Visualization version   GIF version

Theorem pwsgprod 42527
Description: Finite products in a power structure are taken componentwise. Compare pwsgsum 19861. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwsgprod.y 𝑌 = (𝑅s 𝐼)
pwsgprod.b 𝐵 = (Base‘𝑅)
pwsgprod.o 1 = (1r𝑌)
pwsgprod.m 𝑀 = (mulGrp‘𝑌)
pwsgprod.t 𝑇 = (mulGrp‘𝑅)
pwsgprod.i (𝜑𝐼𝑉)
pwsgprod.j (𝜑𝐽𝑊)
pwsgprod.r (𝜑𝑅 ∈ CRing)
pwsgprod.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
pwsgprod.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
Assertion
Ref Expression
pwsgprod (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑀   𝑦,𝑌   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem pwsgprod
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pwsgprod.y . . . . 5 𝑌 = (𝑅s 𝐼)
2 pwsgprod.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2729 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 pwsgprod.r . . . . 5 (𝜑𝑅 ∈ CRing)
5 pwsgprod.i . . . . 5 (𝜑𝐼𝑉)
6 pwsgprod.m . . . . . . 7 𝑀 = (mulGrp‘𝑌)
76, 3mgpbas 20030 . . . . . 6 (Base‘𝑌) = (Base‘𝑀)
8 pwsgprod.o . . . . . . 7 1 = (1r𝑌)
96, 8ringidval 20068 . . . . . 6 1 = (0g𝑀)
101pwscrng 20211 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑉) → 𝑌 ∈ CRing)
114, 5, 10syl2anc 584 . . . . . . 7 (𝜑𝑌 ∈ CRing)
126crngmgp 20126 . . . . . . 7 (𝑌 ∈ CRing → 𝑀 ∈ CMnd)
1311, 12syl 17 . . . . . 6 (𝜑𝑀 ∈ CMnd)
14 pwsgprod.j . . . . . 6 (𝜑𝐽𝑊)
154adantr 480 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝑅 ∈ CRing)
165adantr 480 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝐼𝑉)
17 pwsgprod.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1817anassrs 467 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1918an32s 652 . . . . . . . . 9 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
2019fmpttd 7049 . . . . . . . 8 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼𝐵)
211, 2, 3, 15, 16, 20pwselbasr 42526 . . . . . . 7 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
2221fmpttd 7049 . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
23 pwsgprod.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
247, 9, 13, 14, 22, 23gsumcl 19794 . . . . 5 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
251, 2, 3, 4, 5, 24pwselbas 17393 . . . 4 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))):𝐼𝐵)
2625ffnd 6653 . . 3 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
27 nfcv 2891 . . . . 5 𝑥𝑀
28 nfcv 2891 . . . . 5 𝑥 Σg
29 nfcv 2891 . . . . . 6 𝑥𝐽
30 nfmpt1 5191 . . . . . 6 𝑥(𝑥𝐼𝑈)
3129, 30nfmpt 5190 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
3227, 28, 31nfov 7379 . . . 4 𝑥(𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3332dffn5f 6894 . . 3 ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3426, 33sylib 218 . 2 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
35 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
36 eqid 2729 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3736fvmpt2 6941 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3835, 18, 37syl2an2r 685 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3938mpteq2dva 5185 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
4039oveq2d 7365 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑇 Σg (𝑦𝐽𝑈)))
4113adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑀 ∈ CMnd)
42 pwsgprod.t . . . . . . . . 9 𝑇 = (mulGrp‘𝑅)
4342crngmgp 20126 . . . . . . . 8 (𝑅 ∈ CRing → 𝑇 ∈ CMnd)
444, 43syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
4544cmnmndd 19683 . . . . . 6 (𝜑𝑇 ∈ Mnd)
4645adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
4714adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
484crngringd 20131 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4948adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
505adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐼𝑉)
511, 3, 6, 42, 49, 50, 35pwspjmhmmgpd 20213 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑀 MndHom 𝑇))
5221adantlr 715 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5323adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
54 fveq1 6821 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
55 fveq1 6821 . . . . 5 (𝑎 = (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
567, 9, 41, 46, 47, 51, 52, 53, 54, 55gsummhm2 19818 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5740, 56eqtr3d 2766 . . 3 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽𝑈)) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5857mpteq2dva 5185 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
5934, 58eqtr4d 2767 1 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cmpt 5173   Fn wfn 6477  cfv 6482  (class class class)co 7349   finSupp cfsupp 9251  Basecbs 17120   Σg cgsu 17344  s cpws 17350  Mndcmnd 18608  CMndccmn 19659  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121
This theorem is referenced by:  evlsvvval  42546
  Copyright terms: Public domain W3C validator