Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwsgprod Structured version   Visualization version   GIF version

Theorem pwsgprod 42531
Description: Finite products in a power structure are taken componentwise. Compare pwsgsum 20015. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwsgprod.y 𝑌 = (𝑅s 𝐼)
pwsgprod.b 𝐵 = (Base‘𝑅)
pwsgprod.o 1 = (1r𝑌)
pwsgprod.m 𝑀 = (mulGrp‘𝑌)
pwsgprod.t 𝑇 = (mulGrp‘𝑅)
pwsgprod.i (𝜑𝐼𝑉)
pwsgprod.j (𝜑𝐽𝑊)
pwsgprod.r (𝜑𝑅 ∈ CRing)
pwsgprod.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
pwsgprod.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
Assertion
Ref Expression
pwsgprod (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝑀   𝑦,𝑌   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)   𝑀(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem pwsgprod
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pwsgprod.y . . . . 5 𝑌 = (𝑅s 𝐼)
2 pwsgprod.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2735 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 pwsgprod.r . . . . 5 (𝜑𝑅 ∈ CRing)
5 pwsgprod.i . . . . 5 (𝜑𝐼𝑉)
6 pwsgprod.m . . . . . . 7 𝑀 = (mulGrp‘𝑌)
76, 3mgpbas 20158 . . . . . 6 (Base‘𝑌) = (Base‘𝑀)
8 pwsgprod.o . . . . . . 7 1 = (1r𝑌)
96, 8ringidval 20201 . . . . . 6 1 = (0g𝑀)
101pwscrng 20340 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑉) → 𝑌 ∈ CRing)
114, 5, 10syl2anc 584 . . . . . . 7 (𝜑𝑌 ∈ CRing)
126crngmgp 20259 . . . . . . 7 (𝑌 ∈ CRing → 𝑀 ∈ CMnd)
1311, 12syl 17 . . . . . 6 (𝜑𝑀 ∈ CMnd)
14 pwsgprod.j . . . . . 6 (𝜑𝐽𝑊)
154adantr 480 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝑅 ∈ CRing)
165adantr 480 . . . . . . . 8 ((𝜑𝑦𝐽) → 𝐼𝑉)
17 pwsgprod.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1817anassrs 467 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1918an32s 652 . . . . . . . . 9 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
2019fmpttd 7135 . . . . . . . 8 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼𝐵)
211, 2, 3, 15, 16, 20pwselbasr 42530 . . . . . . 7 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
2221fmpttd 7135 . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
23 pwsgprod.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
247, 9, 13, 14, 22, 23gsumcl 19948 . . . . 5 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
251, 2, 3, 4, 5, 24pwselbas 17536 . . . 4 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))):𝐼𝐵)
2625ffnd 6738 . . 3 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
27 nfcv 2903 . . . . 5 𝑥𝑀
28 nfcv 2903 . . . . 5 𝑥 Σg
29 nfcv 2903 . . . . . 6 𝑥𝐽
30 nfmpt1 5256 . . . . . 6 𝑥(𝑥𝐼𝑈)
3129, 30nfmpt 5255 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
3227, 28, 31nfov 7461 . . . 4 𝑥(𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3332dffn5f 6980 . . 3 ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3426, 33sylib 218 . 2 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
35 simpr 484 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
36 eqid 2735 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3736fvmpt2 7027 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3835, 18, 37syl2an2r 685 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3938mpteq2dva 5248 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
4039oveq2d 7447 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑇 Σg (𝑦𝐽𝑈)))
4113adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑀 ∈ CMnd)
42 pwsgprod.t . . . . . . . . 9 𝑇 = (mulGrp‘𝑅)
4342crngmgp 20259 . . . . . . . 8 (𝑅 ∈ CRing → 𝑇 ∈ CMnd)
444, 43syl 17 . . . . . . 7 (𝜑𝑇 ∈ CMnd)
4544cmnmndd 19837 . . . . . 6 (𝜑𝑇 ∈ Mnd)
4645adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝑇 ∈ Mnd)
4714adantr 480 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
484crngringd 20264 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4948adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
505adantr 480 . . . . . 6 ((𝜑𝑥𝐼) → 𝐼𝑉)
511, 3, 6, 42, 49, 50, 35pwspjmhmmgpd 20342 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑀 MndHom 𝑇))
5221adantlr 715 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5323adantr 480 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )
54 fveq1 6906 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
55 fveq1 6906 . . . . 5 (𝑎 = (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
567, 9, 41, 46, 47, 51, 52, 53, 54, 55gsummhm2 19972 . . . 4 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5740, 56eqtr3d 2777 . . 3 ((𝜑𝑥𝐼) → (𝑇 Σg (𝑦𝐽𝑈)) = ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
5857mpteq2dva 5248 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
5934, 58eqtr4d 2778 1 (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cmpt 5231   Fn wfn 6558  cfv 6563  (class class class)co 7431   finSupp cfsupp 9399  Basecbs 17245   Σg cgsu 17487  s cpws 17493  Mndcmnd 18760  CMndccmn 19813  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251  CRingccrg 20252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254
This theorem is referenced by:  evlsvvval  42550
  Copyright terms: Public domain W3C validator