| Step | Hyp | Ref
| Expression |
| 1 | | fveq1 6880 |
. . . . . . . 8
⊢ (𝑙 = 𝐴 → (𝑙‘𝑖) = (𝐴‘𝑖)) |
| 2 | 1 | oveq2d 7426 |
. . . . . . 7
⊢ (𝑙 = 𝐴 → ((𝑏‘𝑖) ↑ (𝑙‘𝑖)) = ((𝑏‘𝑖) ↑ (𝐴‘𝑖))) |
| 3 | 2 | mpteq2dv 5220 |
. . . . . 6
⊢ (𝑙 = 𝐴 → (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))) = (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))) |
| 4 | 3 | oveq2d 7426 |
. . . . 5
⊢ (𝑙 = 𝐴 → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))) = (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) |
| 5 | 4 | oveq2d 7426 |
. . . 4
⊢ (𝑙 = 𝐴 → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))) = ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) |
| 6 | 5 | mpteq2dv 5220 |
. . 3
⊢ (𝑙 = 𝐴 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))))) = (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))))) |
| 7 | 6 | oveq2d 7426 |
. 2
⊢ (𝑙 = 𝐴 → (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 8 | | evlsvvval.q |
. . . 4
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| 9 | | evlsvvval.p |
. . . 4
⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| 10 | | evlsvvval.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
| 11 | | evlsvvval.d |
. . . 4
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 12 | | evlsvvval.k |
. . . 4
⊢ 𝐾 = (Base‘𝑆) |
| 13 | | evlsvvval.u |
. . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| 14 | | eqid 2736 |
. . . 4
⊢ (𝑆 ↑s
(𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) |
| 15 | | eqid 2736 |
. . . 4
⊢
(mulGrp‘(𝑆
↑s (𝐾 ↑m 𝐼))) = (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) |
| 16 | | eqid 2736 |
. . . 4
⊢
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) =
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 17 | | eqid 2736 |
. . . 4
⊢
(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) =
(.r‘(𝑆
↑s (𝐾 ↑m 𝐼))) |
| 18 | | eqid 2736 |
. . . 4
⊢ (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) |
| 19 | | eqid 2736 |
. . . 4
⊢ (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) |
| 20 | | evlsvvval.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 21 | | evlsvvval.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ CRing) |
| 22 | | evlsvvval.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| 23 | | evlsvvval.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 24 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | evlsvval 42550 |
. . 3
⊢ (𝜑 → (𝑄‘𝐹) = ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))))) |
| 25 | | sneq 4616 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑏) → {𝑥} = {(𝐹‘𝑏)}) |
| 26 | 25 | xpeq2d 5689 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑏) → ((𝐾 ↑m 𝐼) × {𝑥}) = ((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)})) |
| 27 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 28 | 9, 27, 10, 11, 23 | mplelf 21963 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
| 29 | 13 | subrgbas 20546 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
| 30 | 22, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 = (Base‘𝑈)) |
| 31 | 30 | feq3d 6698 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹:𝐷⟶𝑅 ↔ 𝐹:𝐷⟶(Base‘𝑈))) |
| 32 | 28, 31 | mpbird 257 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
| 33 | 32 | ffvelcdmda 7079 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘𝑏) ∈ 𝑅) |
| 34 | | ovex 7443 |
. . . . . . . . . 10
⊢ (𝐾 ↑m 𝐼) ∈ V |
| 35 | | snex 5411 |
. . . . . . . . . 10
⊢ {(𝐹‘𝑏)} ∈ V |
| 36 | 34, 35 | xpex 7752 |
. . . . . . . . 9
⊢ ((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)}) ∈ V |
| 37 | 36 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)}) ∈ V) |
| 38 | 18, 26, 33, 37 | fvmptd3 7014 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏)) = ((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)})) |
| 39 | 11 | psrbagf 21883 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ 𝐷 → 𝑏:𝐼⟶ℕ0) |
| 40 | 39 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏:𝐼⟶ℕ0) |
| 41 | 40 | ffnd 6712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 Fn 𝐼) |
| 42 | 34 | mptex 7220 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ V |
| 43 | 42, 19 | fnmpti 6686 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) Fn 𝐼 |
| 44 | 43 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) Fn 𝐼) |
| 45 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 46 | | inidm 4207 |
. . . . . . . . . . 11
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 47 | | eqidd 2737 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → (𝑏‘𝑖) = (𝑏‘𝑖)) |
| 48 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑖 → (𝑎‘𝑥) = (𝑎‘𝑖)) |
| 49 | 48 | mpteq2dv 5220 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) = (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))) |
| 50 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
| 51 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝑆
↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) |
| 52 | 21 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → 𝑆 ∈ CRing) |
| 53 | | ovexd 7445 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → (𝐾 ↑m 𝐼) ∈ V) |
| 54 | | elmapi 8868 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (𝐾 ↑m 𝐼) → 𝑎:𝐼⟶𝐾) |
| 55 | 54 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ (𝐾 ↑m 𝐼) ∧ 𝑖 ∈ 𝐼) → (𝑎‘𝑖) ∈ 𝐾) |
| 56 | 55 | ancoms 458 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ 𝐼 ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → (𝑎‘𝑖) ∈ 𝐾) |
| 57 | 56 | adantll 714 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → (𝑎‘𝑖) ∈ 𝐾) |
| 58 | 57 | fmpttd 7110 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖)):(𝐾 ↑m 𝐼)⟶𝐾) |
| 59 | 14, 12, 51, 52, 53, 58 | pwselbasr 42533 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖)) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 60 | 19, 49, 50, 59 | fvmptd3 7014 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))‘𝑖) = (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))) |
| 61 | 41, 44, 45, 45, 46, 47, 60 | offval 7685 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))) = (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))))) |
| 62 | 15, 51 | mgpbas 20110 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(𝑆
↑s (𝐾 ↑m 𝐼))) = (Base‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
| 63 | 21 | crngringd 20211 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑆 ∈ Ring) |
| 64 | | ovexd 7445 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) |
| 65 | 14 | pwsring 20289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ∈ Ring ∧ (𝐾 ↑m 𝐼) ∈ V) → (𝑆 ↑s
(𝐾 ↑m 𝐼)) ∈ Ring) |
| 66 | 63, 64, 65 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑆 ↑s (𝐾 ↑m 𝐼)) ∈ Ring) |
| 67 | 15 | ringmgp 20204 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ↑s
(𝐾 ↑m 𝐼)) ∈ Ring →
(mulGrp‘(𝑆
↑s (𝐾 ↑m 𝐼))) ∈ Mnd) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) ∈ Mnd) |
| 69 | 68 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → (mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) ∈ Mnd) |
| 70 | 40 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → (𝑏‘𝑖) ∈
ℕ0) |
| 71 | 62, 16, 69, 70, 59 | mulgnn0cld 19083 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → ((𝑏‘𝑖)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 72 | 14, 12, 51, 52, 53, 71 | pwselbas 17508 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → ((𝑏‘𝑖)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))):(𝐾 ↑m 𝐼)⟶𝐾) |
| 73 | 72 | ffnd 6712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → ((𝑏‘𝑖)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))) Fn (𝐾 ↑m 𝐼)) |
| 74 | | ovex 7443 |
. . . . . . . . . . . . . 14
⊢ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)) ∈ V |
| 75 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))) = (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))) |
| 76 | 74, 75 | fnmpti 6686 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))) Fn (𝐾 ↑m 𝐼) |
| 77 | 76 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))) Fn (𝐾 ↑m 𝐼)) |
| 78 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖)) = (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖)) |
| 79 | | fveq1 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑝 → (𝑎‘𝑖) = (𝑝‘𝑖)) |
| 80 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → 𝑝 ∈ (𝐾 ↑m 𝐼)) |
| 81 | | fvexd 6896 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → (𝑝‘𝑖) ∈ V) |
| 82 | 78, 79, 80, 81 | fvmptd3 7014 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))‘𝑝) = (𝑝‘𝑖)) |
| 83 | 82 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → ((𝑏‘𝑖) ↑ ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))‘𝑝)) = ((𝑏‘𝑖) ↑ (𝑝‘𝑖))) |
| 84 | | evlsvvval.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (mulGrp‘𝑆) |
| 85 | | evlsvvval.w |
. . . . . . . . . . . . . 14
⊢ ↑ =
(.g‘𝑀) |
| 86 | 63 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → 𝑆 ∈ Ring) |
| 87 | | ovexd 7445 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → (𝐾 ↑m 𝐼) ∈ V) |
| 88 | 70 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → (𝑏‘𝑖) ∈
ℕ0) |
| 89 | 59 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖)) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 90 | 14, 51, 15, 84, 16, 85, 86, 87, 88, 89, 80 | pwsexpg 20294 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → (((𝑏‘𝑖)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖)))‘𝑝) = ((𝑏‘𝑖) ↑ ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))‘𝑝))) |
| 91 | | fveq1 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑝 → (𝑚‘𝑖) = (𝑝‘𝑖)) |
| 92 | 91 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑝 → ((𝑏‘𝑖) ↑ (𝑚‘𝑖)) = ((𝑏‘𝑖) ↑ (𝑝‘𝑖))) |
| 93 | | ovexd 7445 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → ((𝑏‘𝑖) ↑ (𝑝‘𝑖)) ∈ V) |
| 94 | 75, 92, 80, 93 | fvmptd3 7014 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → ((𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))‘𝑝) = ((𝑏‘𝑖) ↑ (𝑝‘𝑖))) |
| 95 | 83, 90, 94 | 3eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) ∧ 𝑝 ∈ (𝐾 ↑m 𝐼)) → (((𝑏‘𝑖)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖)))‘𝑝) = ((𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))‘𝑝)) |
| 96 | 73, 77, 95 | eqfnfvd 7029 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ 𝐼) → ((𝑏‘𝑖)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖))) = (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))) |
| 97 | 96 | mpteq2dva 5219 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖)(.g‘(mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))))(𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑖)))) = (𝑖 ∈ 𝐼 ↦ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))) |
| 98 | 61, 97 | eqtrd 2771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))) = (𝑖 ∈ 𝐼 ↦ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))) |
| 99 | 98 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))) = ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝑖 ∈ 𝐼 ↦ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))))) |
| 100 | | eqid 2736 |
. . . . . . . . 9
⊢
(1r‘(𝑆 ↑s (𝐾 ↑m 𝐼))) =
(1r‘(𝑆
↑s (𝐾 ↑m 𝐼))) |
| 101 | | ovexd 7445 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐾 ↑m 𝐼) ∈ V) |
| 102 | 21 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
| 103 | 84, 12 | mgpbas 20110 |
. . . . . . . . . 10
⊢ 𝐾 = (Base‘𝑀) |
| 104 | 84 | ringmgp 20204 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ Ring → 𝑀 ∈ Mnd) |
| 105 | 63, 104 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 106 | 105 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑚 ∈ (𝐾 ↑m 𝐼) ∧ 𝑖 ∈ 𝐼)) → 𝑀 ∈ Mnd) |
| 107 | 70 | adantrl 716 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑚 ∈ (𝐾 ↑m 𝐼) ∧ 𝑖 ∈ 𝐼)) → (𝑏‘𝑖) ∈
ℕ0) |
| 108 | | elmapi 8868 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (𝐾 ↑m 𝐼) → 𝑚:𝐼⟶𝐾) |
| 109 | 108 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ (𝐾 ↑m 𝐼) ∧ 𝑖 ∈ 𝐼) → (𝑚‘𝑖) ∈ 𝐾) |
| 110 | 109 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑚 ∈ (𝐾 ↑m 𝐼) ∧ 𝑖 ∈ 𝐼)) → (𝑚‘𝑖) ∈ 𝐾) |
| 111 | 103, 85, 106, 107, 110 | mulgnn0cld 19083 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ (𝑚 ∈ (𝐾 ↑m 𝐼) ∧ 𝑖 ∈ 𝐼)) → ((𝑏‘𝑖) ↑ (𝑚‘𝑖)) ∈ 𝐾) |
| 112 | 45 | mptexd 7221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑖 ∈ 𝐼 ↦ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))) ∈ V) |
| 113 | | fvexd 6896 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (1r‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) ∈ V) |
| 114 | | funmpt 6579 |
. . . . . . . . . . 11
⊢ Fun
(𝑖 ∈ 𝐼 ↦ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))) |
| 115 | 114 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → Fun (𝑖 ∈ 𝐼 ↦ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))) |
| 116 | 11 | psrbagfsupp 21884 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ 𝐷 → 𝑏 finSupp 0) |
| 117 | 116 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 finSupp 0) |
| 118 | | ssidd 3987 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑏 supp 0) ⊆ (𝑏 supp 0)) |
| 119 | | 0cnd 11233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 0 ∈ ℂ) |
| 120 | 40, 118, 45, 119 | suppssr 8199 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) → (𝑏‘𝑖) = 0) |
| 121 | 120 | oveq1d 7425 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) → ((𝑏‘𝑖) ↑ (𝑚‘𝑖)) = (0 ↑ (𝑚‘𝑖))) |
| 122 | 121 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → ((𝑏‘𝑖) ↑ (𝑚‘𝑖)) = (0 ↑ (𝑚‘𝑖))) |
| 123 | | eldifi 4111 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (𝐼 ∖ (𝑏 supp 0)) → 𝑖 ∈ 𝐼) |
| 124 | 123, 109 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ (𝐾 ↑m 𝐼) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) → (𝑚‘𝑖) ∈ 𝐾) |
| 125 | 124 | ancoms 458 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (𝐼 ∖ (𝑏 supp 0)) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → (𝑚‘𝑖) ∈ 𝐾) |
| 126 | 125 | adantll 714 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → (𝑚‘𝑖) ∈ 𝐾) |
| 127 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 128 | 84, 127 | ringidval 20148 |
. . . . . . . . . . . . . . . 16
⊢
(1r‘𝑆) = (0g‘𝑀) |
| 129 | 103, 128,
85 | mulg0 19062 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚‘𝑖) ∈ 𝐾 → (0 ↑ (𝑚‘𝑖)) = (1r‘𝑆)) |
| 130 | 126, 129 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → (0 ↑ (𝑚‘𝑖)) = (1r‘𝑆)) |
| 131 | 122, 130 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → ((𝑏‘𝑖) ↑ (𝑚‘𝑖)) = (1r‘𝑆)) |
| 132 | 131 | mpteq2dva 5219 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) → (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))) = (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (1r‘𝑆))) |
| 133 | | fconstmpt 5721 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ↑m 𝐼) ×
{(1r‘𝑆)})
= (𝑚 ∈ (𝐾 ↑m 𝐼) ↦
(1r‘𝑆)) |
| 134 | 14, 127 | pws1 20290 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ Ring ∧ (𝐾 ↑m 𝐼) ∈ V) → ((𝐾 ↑m 𝐼) ×
{(1r‘𝑆)})
= (1r‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
| 135 | 63, 64, 134 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐾 ↑m 𝐼) × {(1r‘𝑆)}) =
(1r‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
| 136 | 135 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) → ((𝐾 ↑m 𝐼) × {(1r‘𝑆)}) =
(1r‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
| 137 | 133, 136 | eqtr3id 2785 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) → (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (1r‘𝑆)) = (1r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
| 138 | 132, 137 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑖 ∈ (𝐼 ∖ (𝑏 supp 0))) → (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))) = (1r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 139 | 138, 45 | suppss2 8204 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝑖 ∈ 𝐼 ↦ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))) supp (1r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) ⊆ (𝑏 supp 0)) |
| 140 | 112, 113,
115, 117, 139 | fsuppsssuppgd 9399 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑖 ∈ 𝐼 ↦ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))) finSupp (1r‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
| 141 | 14, 12, 100, 15, 84, 101, 45, 102, 111, 140 | pwsgprod 42534 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝑖 ∈ 𝐼 ↦ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))) = (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))))) |
| 142 | 99, 141 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))) = (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))))) |
| 143 | 38, 142 | oveq12d 7428 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = (((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)})(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))))) |
| 144 | 12 | subrgss 20537 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
| 145 | 29, 144 | eqsstrrd 3999 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾) |
| 146 | 22, 145 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑈) ⊆ 𝐾) |
| 147 | 28, 146 | fssd 6728 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐷⟶𝐾) |
| 148 | 147 | ffvelcdmda 7079 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘𝑏) ∈ 𝐾) |
| 149 | | fconst6g 6772 |
. . . . . . . . 9
⊢ ((𝐹‘𝑏) ∈ 𝐾 → ((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)}):(𝐾 ↑m 𝐼)⟶𝐾) |
| 150 | 148, 149 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)}):(𝐾 ↑m 𝐼)⟶𝐾) |
| 151 | 14, 12, 51, 102, 101, 150 | pwselbasr 42533 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)}) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 152 | 20 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → 𝐼 ∈ 𝑉) |
| 153 | 21 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → 𝑆 ∈ CRing) |
| 154 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → 𝑚 ∈ (𝐾 ↑m 𝐼)) |
| 155 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → 𝑏 ∈ 𝐷) |
| 156 | 11, 12, 84, 85, 152, 153, 154, 155 | evlsvvvallem 42551 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑚 ∈ (𝐾 ↑m 𝐼)) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))) ∈ 𝐾) |
| 157 | 156 | fmpttd 7110 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))):(𝐾 ↑m 𝐼)⟶𝐾) |
| 158 | 14, 12, 51, 102, 101, 157 | pwselbasr 42533 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 159 | | evlsvvval.x |
. . . . . . 7
⊢ · =
(.r‘𝑆) |
| 160 | 14, 51, 102, 101, 151, 158, 159, 17 | pwsmulrval 17510 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)})(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))))) = (((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)}) ∘f · (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))))) |
| 161 | 150 | ffnd 6712 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)}) Fn (𝐾 ↑m 𝐼)) |
| 162 | | ovex 7443 |
. . . . . . . . 9
⊢ (𝑀 Σg
(𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))) ∈ V |
| 163 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))) = (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))) |
| 164 | 162, 163 | fnmpti 6686 |
. . . . . . . 8
⊢ (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))) Fn (𝐾 ↑m 𝐼) |
| 165 | 164 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))))) Fn (𝐾 ↑m 𝐼)) |
| 166 | | inidm 4207 |
. . . . . . 7
⊢ ((𝐾 ↑m 𝐼) ∩ (𝐾 ↑m 𝐼)) = (𝐾 ↑m 𝐼) |
| 167 | | fvex 6894 |
. . . . . . . . 9
⊢ (𝐹‘𝑏) ∈ V |
| 168 | 167 | fvconst2 7201 |
. . . . . . . 8
⊢ (𝑙 ∈ (𝐾 ↑m 𝐼) → (((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)})‘𝑙) = (𝐹‘𝑏)) |
| 169 | 168 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)})‘𝑙) = (𝐹‘𝑏)) |
| 170 | | fveq1 6880 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑙 → (𝑚‘𝑖) = (𝑙‘𝑖)) |
| 171 | 170 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑙 → ((𝑏‘𝑖) ↑ (𝑚‘𝑖)) = ((𝑏‘𝑖) ↑ (𝑙‘𝑖))) |
| 172 | 171 | mpteq2dv 5220 |
. . . . . . . . 9
⊢ (𝑚 = 𝑙 → (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖))) = (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))) |
| 173 | 172 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑚 = 𝑙 → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))) = (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))) |
| 174 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → 𝑙 ∈ (𝐾 ↑m 𝐼)) |
| 175 | 20 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → 𝐼 ∈ 𝑉) |
| 176 | 21 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → 𝑆 ∈ CRing) |
| 177 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → 𝑏 ∈ 𝐷) |
| 178 | 11, 12, 84, 85, 175, 176, 174, 177 | evlsvvvallem 42551 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))) ∈ 𝐾) |
| 179 | 163, 173,
174, 178 | fvmptd3 7014 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐷) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → ((𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))))‘𝑙) = (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))) |
| 180 | 161, 165,
101, 101, 166, 169, 179 | offval 7685 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (((𝐾 ↑m 𝐼) × {(𝐹‘𝑏)}) ∘f · (𝑚 ∈ (𝐾 ↑m 𝐼) ↦ (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑚‘𝑖)))))) = (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))) |
| 181 | 143, 160,
180 | 3eqtrd 2775 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))) = (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))) |
| 182 | 181 | mpteq2dva 5219 |
. . . 4
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))))))) = (𝑏 ∈ 𝐷 ↦ (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))))))) |
| 183 | 182 | oveq2d 7426 |
. . 3
⊢ (𝜑 → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (((𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))‘(𝐹‘𝑏))(.r‘(𝑆 ↑s (𝐾 ↑m 𝐼)))((mulGrp‘(𝑆 ↑s
(𝐾 ↑m 𝐼))) Σg
(𝑏 ∘f
(.g‘(mulGrp‘(𝑆 ↑s (𝐾 ↑m 𝐼))))(𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)))))))) = ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))))) |
| 184 | | eqid 2736 |
. . . 4
⊢
(0g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) =
(0g‘(𝑆
↑s (𝐾 ↑m 𝐼))) |
| 185 | | ovexd 7445 |
. . . . 5
⊢ (𝜑 → (ℕ0
↑m 𝐼)
∈ V) |
| 186 | 11, 185 | rabexd 5315 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
| 187 | 63 | ringcmnd 20249 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ CMnd) |
| 188 | 63 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ (𝐾 ↑m 𝐼) ∧ 𝑏 ∈ 𝐷)) → 𝑆 ∈ Ring) |
| 189 | 148 | adantrl 716 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ (𝐾 ↑m 𝐼) ∧ 𝑏 ∈ 𝐷)) → (𝐹‘𝑏) ∈ 𝐾) |
| 190 | | simpl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 ∈ (𝐾 ↑m 𝐼) ∧ 𝑏 ∈ 𝐷)) → 𝜑) |
| 191 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 ∈ (𝐾 ↑m 𝐼) ∧ 𝑏 ∈ 𝐷)) → 𝑏 ∈ 𝐷) |
| 192 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 ∈ (𝐾 ↑m 𝐼) ∧ 𝑏 ∈ 𝐷)) → 𝑙 ∈ (𝐾 ↑m 𝐼)) |
| 193 | 190, 191,
192, 178 | syl21anc 837 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ (𝐾 ↑m 𝐼) ∧ 𝑏 ∈ 𝐷)) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))) ∈ 𝐾) |
| 194 | 12, 159, 188, 189, 193 | ringcld 20225 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ (𝐾 ↑m 𝐼) ∧ 𝑏 ∈ 𝐷)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))) ∈ 𝐾) |
| 195 | 186 | mptexd 7221 |
. . . . 5
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))) ∈ V) |
| 196 | | fvexd 6896 |
. . . . 5
⊢ (𝜑 →
(0g‘(𝑆
↑s (𝐾 ↑m 𝐼))) ∈ V) |
| 197 | | funmpt 6579 |
. . . . . 6
⊢ Fun
(𝑏 ∈ 𝐷 ↦ (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))) |
| 198 | 197 | a1i 11 |
. . . . 5
⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))))))) |
| 199 | | eqid 2736 |
. . . . . 6
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 200 | 9, 10, 199, 23 | mplelsfi 21960 |
. . . . 5
⊢ (𝜑 → 𝐹 finSupp (0g‘𝑈)) |
| 201 | | ssidd 3987 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ (𝐹 supp (0g‘𝑈))) |
| 202 | | fvexd 6896 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝑈) ∈ V) |
| 203 | 147, 201,
186, 202 | suppssr 8199 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑈)) |
| 204 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 205 | 13, 204 | subrg0 20544 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (SubRing‘𝑆) →
(0g‘𝑆) =
(0g‘𝑈)) |
| 206 | 22, 205 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 207 | 206 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (0g‘𝑆) = (0g‘𝑈)) |
| 208 | 203, 207 | eqtr4d 2774 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝐹‘𝑏) = (0g‘𝑆)) |
| 209 | 208 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (𝐹‘𝑏) = (0g‘𝑆)) |
| 210 | 209 | oveq1d 7425 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))) = ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))))) |
| 211 | 63 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → 𝑆 ∈ Ring) |
| 212 | | eldifi 4111 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈))) → 𝑏 ∈ 𝐷) |
| 213 | 212, 178 | sylanl2 681 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))) ∈ 𝐾) |
| 214 | 12, 159, 204, 211, 213 | ringlzd 20260 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))) = (0g‘𝑆)) |
| 215 | 210, 214 | eqtrd 2771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) ∧ 𝑙 ∈ (𝐾 ↑m 𝐼)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))) = (0g‘𝑆)) |
| 216 | 215 | mpteq2dva 5219 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))))) = (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ (0g‘𝑆))) |
| 217 | | fconstmpt 5721 |
. . . . . . . . 9
⊢ ((𝐾 ↑m 𝐼) ×
{(0g‘𝑆)})
= (𝑙 ∈ (𝐾 ↑m 𝐼) ↦
(0g‘𝑆)) |
| 218 | 187 | cmnmndd 19790 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Mnd) |
| 219 | 14, 204 | pws0g 18756 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Mnd ∧ (𝐾 ↑m 𝐼) ∈ V) → ((𝐾 ↑m 𝐼) ×
{(0g‘𝑆)})
= (0g‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
| 220 | 218, 64, 219 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐾 ↑m 𝐼) × {(0g‘𝑆)}) =
(0g‘(𝑆
↑s (𝐾 ↑m 𝐼)))) |
| 221 | 217, 220 | eqtr3id 2785 |
. . . . . . . 8
⊢ (𝜑 → (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ (0g‘𝑆)) = (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
| 222 | 221 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ (0g‘𝑆)) = (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
| 223 | 216, 222 | eqtrd 2771 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑈)))) → (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))))) = (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
| 224 | 223, 186 | suppss2 8204 |
. . . . 5
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))) supp (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) ⊆ (𝐹 supp (0g‘𝑈))) |
| 225 | 195, 196,
198, 200, 224 | fsuppsssuppgd 9399 |
. . . 4
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))) finSupp (0g‘(𝑆 ↑s
(𝐾 ↑m 𝐼)))) |
| 226 | 14, 12, 184, 64, 186, 187, 194, 225 | pwsgsum 19968 |
. . 3
⊢ (𝜑 → ((𝑆 ↑s (𝐾 ↑m 𝐼)) Σg
(𝑏 ∈ 𝐷 ↦ (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖)))))))) = (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))))) |
| 227 | 24, 183, 226 | 3eqtrd 2775 |
. 2
⊢ (𝜑 → (𝑄‘𝐹) = (𝑙 ∈ (𝐾 ↑m 𝐼) ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝑙‘𝑖))))))))) |
| 228 | | evlsvvval.a |
. 2
⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| 229 | | ovexd 7445 |
. 2
⊢ (𝜑 → (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))))) ∈ V) |
| 230 | 7, 227, 228, 229 | fvmptd4 7015 |
1
⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |