| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagev1 | Structured version Visualization version GIF version | ||
| Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| psrbagev1.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psrbagev1.c | ⊢ 𝐶 = (Base‘𝑇) |
| psrbagev1.x | ⊢ · = (.g‘𝑇) |
| psrbagev1.z | ⊢ 0 = (0g‘𝑇) |
| psrbagev1.t | ⊢ (𝜑 → 𝑇 ∈ CMnd) |
| psrbagev1.b | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| psrbagev1.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
| Ref | Expression |
|---|---|
| psrbagev1 | ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagev1.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ CMnd) | |
| 2 | 1 | cmnmndd 19740 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Mnd) |
| 3 | psrbagev1.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | psrbagev1.x | . . . . . 6 ⊢ · = (.g‘𝑇) | |
| 5 | 3, 4 | mulgnn0cl 19028 | . . . . 5 ⊢ ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶) → (𝑦 · 𝑧) ∈ 𝐶) |
| 6 | 5 | 3expb 1120 | . . . 4 ⊢ ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
| 7 | 2, 6 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
| 8 | psrbagev1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 9 | psrbagev1.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 10 | 9 | psrbagf 21833 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → 𝐵:𝐼⟶ℕ0) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵:𝐼⟶ℕ0) |
| 12 | psrbagev1.g | . . 3 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
| 13 | 11 | ffnd 6691 | . . . 4 ⊢ (𝜑 → 𝐵 Fn 𝐼) |
| 14 | 8, 13 | fndmexd 7882 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 15 | inidm 4192 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 16 | 7, 11, 12, 14, 14, 15 | off 7673 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺):𝐼⟶𝐶) |
| 17 | ovexd 7424 | . . 3 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) ∈ V) | |
| 18 | 12 | ffnd 6691 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
| 19 | 13, 18, 14, 14 | offun 7669 | . . 3 ⊢ (𝜑 → Fun (𝐵 ∘f · 𝐺)) |
| 20 | psrbagev1.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
| 21 | 20 | fvexi 6874 | . . . 4 ⊢ 0 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 23 | 9 | psrbagfsupp 21834 | . . . . 5 ⊢ (𝐵 ∈ 𝐷 → 𝐵 finSupp 0) |
| 24 | 8, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 finSupp 0) |
| 25 | 24 | fsuppimpd 9326 | . . 3 ⊢ (𝜑 → (𝐵 supp 0) ∈ Fin) |
| 26 | ssidd 3972 | . . . 4 ⊢ (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0)) | |
| 27 | 3, 20, 4 | mulg0 19012 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → (0 · 𝑧) = 0 ) |
| 28 | 27 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (0 · 𝑧) = 0 ) |
| 29 | c0ex 11174 | . . . . 5 ⊢ 0 ∈ V | |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 31 | 26, 28, 11, 12, 14, 30 | suppssof1 8180 | . . 3 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0)) |
| 32 | suppssfifsupp 9337 | . . 3 ⊢ ((((𝐵 ∘f · 𝐺) ∈ V ∧ Fun (𝐵 ∘f · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵 ∘f · 𝐺) finSupp 0 ) | |
| 33 | 17, 19, 22, 25, 31, 32 | syl32anc 1380 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) finSupp 0 ) |
| 34 | 16, 33 | jca 511 | 1 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3916 class class class wbr 5109 ◡ccnv 5639 “ cima 5643 Fun wfun 6507 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ∘f cof 7653 supp csupp 8141 ↑m cmap 8801 Fincfn 8920 finSupp cfsupp 9318 0cc0 11074 ℕcn 12187 ℕ0cn0 12448 Basecbs 17185 0gc0g 17408 Mndcmnd 18667 .gcmg 19005 CMndccmn 19716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-seq 13973 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mulg 19006 df-cmn 19718 |
| This theorem is referenced by: psrbagev2 21991 evlslem1 21995 |
| Copyright terms: Public domain | W3C validator |