Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrbagev1 | Structured version Visualization version GIF version |
Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
psrbagev1.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrbagev1.c | ⊢ 𝐶 = (Base‘𝑇) |
psrbagev1.x | ⊢ · = (.g‘𝑇) |
psrbagev1.z | ⊢ 0 = (0g‘𝑇) |
psrbagev1.t | ⊢ (𝜑 → 𝑇 ∈ CMnd) |
psrbagev1.b | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
psrbagev1.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
Ref | Expression |
---|---|
psrbagev1 | ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbagev1.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ CMnd) | |
2 | 1 | cmnmndd 19409 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Mnd) |
3 | psrbagev1.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑇) | |
4 | psrbagev1.x | . . . . . 6 ⊢ · = (.g‘𝑇) | |
5 | 3, 4 | mulgnn0cl 18720 | . . . . 5 ⊢ ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶) → (𝑦 · 𝑧) ∈ 𝐶) |
6 | 5 | 3expb 1119 | . . . 4 ⊢ ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
7 | 2, 6 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
8 | psrbagev1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
9 | psrbagev1.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
10 | 9 | psrbagf 21121 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → 𝐵:𝐼⟶ℕ0) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵:𝐼⟶ℕ0) |
12 | psrbagev1.g | . . 3 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
13 | 11 | ffnd 6601 | . . . 4 ⊢ (𝜑 → 𝐵 Fn 𝐼) |
14 | 8, 13 | fndmexd 7753 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
15 | inidm 4152 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
16 | 7, 11, 12, 14, 14, 15 | off 7551 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺):𝐼⟶𝐶) |
17 | ovexd 7310 | . . 3 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) ∈ V) | |
18 | 12 | ffnd 6601 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
19 | 13, 18, 14, 14 | offun 7547 | . . 3 ⊢ (𝜑 → Fun (𝐵 ∘f · 𝐺)) |
20 | psrbagev1.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
21 | 20 | fvexi 6788 | . . . 4 ⊢ 0 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
23 | 9 | psrbagfsupp 21123 | . . . . 5 ⊢ (𝐵 ∈ 𝐷 → 𝐵 finSupp 0) |
24 | 8, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 finSupp 0) |
25 | 24 | fsuppimpd 9135 | . . 3 ⊢ (𝜑 → (𝐵 supp 0) ∈ Fin) |
26 | ssidd 3944 | . . . 4 ⊢ (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0)) | |
27 | 3, 20, 4 | mulg0 18707 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → (0 · 𝑧) = 0 ) |
28 | 27 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (0 · 𝑧) = 0 ) |
29 | c0ex 10969 | . . . . 5 ⊢ 0 ∈ V | |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
31 | 26, 28, 11, 12, 14, 30 | suppssof1 8015 | . . 3 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0)) |
32 | suppssfifsupp 9143 | . . 3 ⊢ ((((𝐵 ∘f · 𝐺) ∈ V ∧ Fun (𝐵 ∘f · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵 ∘f · 𝐺) finSupp 0 ) | |
33 | 17, 19, 22, 25, 31, 32 | syl32anc 1377 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) finSupp 0 ) |
34 | 16, 33 | jca 512 | 1 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ◡ccnv 5588 “ cima 5592 Fun wfun 6427 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 supp csupp 7977 ↑m cmap 8615 Fincfn 8733 finSupp cfsupp 9128 0cc0 10871 ℕcn 11973 ℕ0cn0 12233 Basecbs 16912 0gc0g 17150 Mndcmnd 18385 .gcmg 18700 CMndccmn 19386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-seq 13722 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mulg 18701 df-cmn 19388 |
This theorem is referenced by: psrbagev2 21287 evlslem1 21292 |
Copyright terms: Public domain | W3C validator |