MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagev1 Structured version   Visualization version   GIF version

Theorem psrbagev1 22021
Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
psrbagev1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrbagev1.c 𝐶 = (Base‘𝑇)
psrbagev1.x · = (.g𝑇)
psrbagev1.z 0 = (0g𝑇)
psrbagev1.t (𝜑𝑇 ∈ CMnd)
psrbagev1.b (𝜑𝐵𝐷)
psrbagev1.g (𝜑𝐺:𝐼𝐶)
Assertion
Ref Expression
psrbagev1 (𝜑 → ((𝐵f · 𝐺):𝐼𝐶 ∧ (𝐵f · 𝐺) finSupp 0 ))
Distinct variable groups:   𝐵,   ,𝐼
Allowed substitution hints:   𝜑()   𝐶()   𝐷()   𝑇()   · ()   𝐺()   0 ()

Proof of Theorem psrbagev1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbagev1.t . . . . 5 (𝜑𝑇 ∈ CMnd)
21cmnmndd 19759 . . . 4 (𝜑𝑇 ∈ Mnd)
3 psrbagev1.c . . . . . 6 𝐶 = (Base‘𝑇)
4 psrbagev1.x . . . . . 6 · = (.g𝑇)
53, 4mulgnn0cl 19045 . . . . 5 ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑧𝐶) → (𝑦 · 𝑧) ∈ 𝐶)
653expb 1118 . . . 4 ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 · 𝑧) ∈ 𝐶)
72, 6sylan 579 . . 3 ((𝜑 ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 · 𝑧) ∈ 𝐶)
8 psrbagev1.b . . . 4 (𝜑𝐵𝐷)
9 psrbagev1.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
109psrbagf 21851 . . . 4 (𝐵𝐷𝐵:𝐼⟶ℕ0)
118, 10syl 17 . . 3 (𝜑𝐵:𝐼⟶ℕ0)
12 psrbagev1.g . . 3 (𝜑𝐺:𝐼𝐶)
1311ffnd 6723 . . . 4 (𝜑𝐵 Fn 𝐼)
148, 13fndmexd 7912 . . 3 (𝜑𝐼 ∈ V)
15 inidm 4219 . . 3 (𝐼𝐼) = 𝐼
167, 11, 12, 14, 14, 15off 7703 . 2 (𝜑 → (𝐵f · 𝐺):𝐼𝐶)
17 ovexd 7455 . . 3 (𝜑 → (𝐵f · 𝐺) ∈ V)
1812ffnd 6723 . . . 4 (𝜑𝐺 Fn 𝐼)
1913, 18, 14, 14offun 7699 . . 3 (𝜑 → Fun (𝐵f · 𝐺))
20 psrbagev1.z . . . . 5 0 = (0g𝑇)
2120fvexi 6911 . . . 4 0 ∈ V
2221a1i 11 . . 3 (𝜑0 ∈ V)
239psrbagfsupp 21853 . . . . 5 (𝐵𝐷𝐵 finSupp 0)
248, 23syl 17 . . . 4 (𝜑𝐵 finSupp 0)
2524fsuppimpd 9394 . . 3 (𝜑 → (𝐵 supp 0) ∈ Fin)
26 ssidd 4003 . . . 4 (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0))
273, 20, 4mulg0 19030 . . . . 5 (𝑧𝐶 → (0 · 𝑧) = 0 )
2827adantl 481 . . . 4 ((𝜑𝑧𝐶) → (0 · 𝑧) = 0 )
29 c0ex 11239 . . . . 5 0 ∈ V
3029a1i 11 . . . 4 (𝜑 → 0 ∈ V)
3126, 28, 11, 12, 14, 30suppssof1 8205 . . 3 (𝜑 → ((𝐵f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))
32 suppssfifsupp 9404 . . 3 ((((𝐵f · 𝐺) ∈ V ∧ Fun (𝐵f · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵f · 𝐺) finSupp 0 )
3317, 19, 22, 25, 31, 32syl32anc 1376 . 2 (𝜑 → (𝐵f · 𝐺) finSupp 0 )
3416, 33jca 511 1 (𝜑 → ((𝐵f · 𝐺):𝐼𝐶 ∧ (𝐵f · 𝐺) finSupp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {crab 3429  Vcvv 3471  wss 3947   class class class wbr 5148  ccnv 5677  cima 5681  Fun wfun 6542  wf 6544  cfv 6548  (class class class)co 7420  f cof 7683   supp csupp 8165  m cmap 8845  Fincfn 8964   finSupp cfsupp 9386  0cc0 11139  cn 12243  0cn0 12503  Basecbs 17180  0gc0g 17421  Mndcmnd 18694  .gcmg 19023  CMndccmn 19735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-seq 14000  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mulg 19024  df-cmn 19737
This theorem is referenced by:  psrbagev2  22023  evlslem1  22028
  Copyright terms: Public domain W3C validator