| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagev1 | Structured version Visualization version GIF version | ||
| Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| psrbagev1.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psrbagev1.c | ⊢ 𝐶 = (Base‘𝑇) |
| psrbagev1.x | ⊢ · = (.g‘𝑇) |
| psrbagev1.z | ⊢ 0 = (0g‘𝑇) |
| psrbagev1.t | ⊢ (𝜑 → 𝑇 ∈ CMnd) |
| psrbagev1.b | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| psrbagev1.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
| Ref | Expression |
|---|---|
| psrbagev1 | ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagev1.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ CMnd) | |
| 2 | 1 | cmnmndd 19722 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Mnd) |
| 3 | psrbagev1.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | psrbagev1.x | . . . . . 6 ⊢ · = (.g‘𝑇) | |
| 5 | 3, 4 | mulgnn0cl 19009 | . . . . 5 ⊢ ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶) → (𝑦 · 𝑧) ∈ 𝐶) |
| 6 | 5 | 3expb 1120 | . . . 4 ⊢ ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
| 7 | 2, 6 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
| 8 | psrbagev1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 9 | psrbagev1.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 10 | 9 | psrbagf 21861 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → 𝐵:𝐼⟶ℕ0) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵:𝐼⟶ℕ0) |
| 12 | psrbagev1.g | . . 3 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
| 13 | 11 | ffnd 6658 | . . . 4 ⊢ (𝜑 → 𝐵 Fn 𝐼) |
| 14 | 8, 13 | fndmexd 7840 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 15 | inidm 4176 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 16 | 7, 11, 12, 14, 14, 15 | off 7634 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺):𝐼⟶𝐶) |
| 17 | ovexd 7387 | . . 3 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) ∈ V) | |
| 18 | 12 | ffnd 6658 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
| 19 | 13, 18, 14, 14 | offun 7630 | . . 3 ⊢ (𝜑 → Fun (𝐵 ∘f · 𝐺)) |
| 20 | psrbagev1.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
| 21 | 20 | fvexi 6842 | . . . 4 ⊢ 0 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 23 | 9 | psrbagfsupp 21862 | . . . . 5 ⊢ (𝐵 ∈ 𝐷 → 𝐵 finSupp 0) |
| 24 | 8, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 finSupp 0) |
| 25 | 24 | fsuppimpd 9259 | . . 3 ⊢ (𝜑 → (𝐵 supp 0) ∈ Fin) |
| 26 | ssidd 3953 | . . . 4 ⊢ (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0)) | |
| 27 | 3, 20, 4 | mulg0 18993 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → (0 · 𝑧) = 0 ) |
| 28 | 27 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (0 · 𝑧) = 0 ) |
| 29 | c0ex 11112 | . . . . 5 ⊢ 0 ∈ V | |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 31 | 26, 28, 11, 12, 14, 30 | suppssof1 8135 | . . 3 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0)) |
| 32 | suppssfifsupp 9270 | . . 3 ⊢ ((((𝐵 ∘f · 𝐺) ∈ V ∧ Fun (𝐵 ∘f · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵 ∘f · 𝐺) finSupp 0 ) | |
| 33 | 17, 19, 22, 25, 31, 32 | syl32anc 1380 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) finSupp 0 ) |
| 34 | 16, 33 | jca 511 | 1 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 class class class wbr 5093 ◡ccnv 5618 “ cima 5622 Fun wfun 6481 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 ∘f cof 7614 supp csupp 8096 ↑m cmap 8756 Fincfn 8875 finSupp cfsupp 9251 0cc0 11012 ℕcn 12131 ℕ0cn0 12387 Basecbs 17126 0gc0g 17349 Mndcmnd 18648 .gcmg 18986 CMndccmn 19698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-seq 13915 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mulg 18987 df-cmn 19700 |
| This theorem is referenced by: psrbagev2 22019 evlslem1 22023 |
| Copyright terms: Public domain | W3C validator |