MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagev1 Structured version   Visualization version   GIF version

Theorem psrbagev1 21990
Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
psrbagev1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrbagev1.c 𝐶 = (Base‘𝑇)
psrbagev1.x · = (.g𝑇)
psrbagev1.z 0 = (0g𝑇)
psrbagev1.t (𝜑𝑇 ∈ CMnd)
psrbagev1.b (𝜑𝐵𝐷)
psrbagev1.g (𝜑𝐺:𝐼𝐶)
Assertion
Ref Expression
psrbagev1 (𝜑 → ((𝐵f · 𝐺):𝐼𝐶 ∧ (𝐵f · 𝐺) finSupp 0 ))
Distinct variable groups:   𝐵,   ,𝐼
Allowed substitution hints:   𝜑()   𝐶()   𝐷()   𝑇()   · ()   𝐺()   0 ()

Proof of Theorem psrbagev1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbagev1.t . . . . 5 (𝜑𝑇 ∈ CMnd)
21cmnmndd 19740 . . . 4 (𝜑𝑇 ∈ Mnd)
3 psrbagev1.c . . . . . 6 𝐶 = (Base‘𝑇)
4 psrbagev1.x . . . . . 6 · = (.g𝑇)
53, 4mulgnn0cl 19028 . . . . 5 ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑧𝐶) → (𝑦 · 𝑧) ∈ 𝐶)
653expb 1120 . . . 4 ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 · 𝑧) ∈ 𝐶)
72, 6sylan 580 . . 3 ((𝜑 ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 · 𝑧) ∈ 𝐶)
8 psrbagev1.b . . . 4 (𝜑𝐵𝐷)
9 psrbagev1.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
109psrbagf 21833 . . . 4 (𝐵𝐷𝐵:𝐼⟶ℕ0)
118, 10syl 17 . . 3 (𝜑𝐵:𝐼⟶ℕ0)
12 psrbagev1.g . . 3 (𝜑𝐺:𝐼𝐶)
1311ffnd 6691 . . . 4 (𝜑𝐵 Fn 𝐼)
148, 13fndmexd 7882 . . 3 (𝜑𝐼 ∈ V)
15 inidm 4192 . . 3 (𝐼𝐼) = 𝐼
167, 11, 12, 14, 14, 15off 7673 . 2 (𝜑 → (𝐵f · 𝐺):𝐼𝐶)
17 ovexd 7424 . . 3 (𝜑 → (𝐵f · 𝐺) ∈ V)
1812ffnd 6691 . . . 4 (𝜑𝐺 Fn 𝐼)
1913, 18, 14, 14offun 7669 . . 3 (𝜑 → Fun (𝐵f · 𝐺))
20 psrbagev1.z . . . . 5 0 = (0g𝑇)
2120fvexi 6874 . . . 4 0 ∈ V
2221a1i 11 . . 3 (𝜑0 ∈ V)
239psrbagfsupp 21834 . . . . 5 (𝐵𝐷𝐵 finSupp 0)
248, 23syl 17 . . . 4 (𝜑𝐵 finSupp 0)
2524fsuppimpd 9326 . . 3 (𝜑 → (𝐵 supp 0) ∈ Fin)
26 ssidd 3972 . . . 4 (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0))
273, 20, 4mulg0 19012 . . . . 5 (𝑧𝐶 → (0 · 𝑧) = 0 )
2827adantl 481 . . . 4 ((𝜑𝑧𝐶) → (0 · 𝑧) = 0 )
29 c0ex 11174 . . . . 5 0 ∈ V
3029a1i 11 . . . 4 (𝜑 → 0 ∈ V)
3126, 28, 11, 12, 14, 30suppssof1 8180 . . 3 (𝜑 → ((𝐵f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))
32 suppssfifsupp 9337 . . 3 ((((𝐵f · 𝐺) ∈ V ∧ Fun (𝐵f · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵f · 𝐺) finSupp 0 )
3317, 19, 22, 25, 31, 32syl32anc 1380 . 2 (𝜑 → (𝐵f · 𝐺) finSupp 0 )
3416, 33jca 511 1 (𝜑 → ((𝐵f · 𝐺):𝐼𝐶 ∧ (𝐵f · 𝐺) finSupp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3916   class class class wbr 5109  ccnv 5639  cima 5643  Fun wfun 6507  wf 6509  cfv 6513  (class class class)co 7389  f cof 7653   supp csupp 8141  m cmap 8801  Fincfn 8920   finSupp cfsupp 9318  0cc0 11074  cn 12187  0cn0 12448  Basecbs 17185  0gc0g 17408  Mndcmnd 18667  .gcmg 19005  CMndccmn 19716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-seq 13973  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mulg 19006  df-cmn 19718
This theorem is referenced by:  psrbagev2  21991  evlslem1  21995
  Copyright terms: Public domain W3C validator