| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagev1 | Structured version Visualization version GIF version | ||
| Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| psrbagev1.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psrbagev1.c | ⊢ 𝐶 = (Base‘𝑇) |
| psrbagev1.x | ⊢ · = (.g‘𝑇) |
| psrbagev1.z | ⊢ 0 = (0g‘𝑇) |
| psrbagev1.t | ⊢ (𝜑 → 𝑇 ∈ CMnd) |
| psrbagev1.b | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| psrbagev1.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
| Ref | Expression |
|---|---|
| psrbagev1 | ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagev1.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ CMnd) | |
| 2 | 1 | cmnmndd 19734 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Mnd) |
| 3 | psrbagev1.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | psrbagev1.x | . . . . . 6 ⊢ · = (.g‘𝑇) | |
| 5 | 3, 4 | mulgnn0cl 19022 | . . . . 5 ⊢ ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶) → (𝑦 · 𝑧) ∈ 𝐶) |
| 6 | 5 | 3expb 1120 | . . . 4 ⊢ ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
| 7 | 2, 6 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
| 8 | psrbagev1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 9 | psrbagev1.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 10 | 9 | psrbagf 21827 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → 𝐵:𝐼⟶ℕ0) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵:𝐼⟶ℕ0) |
| 12 | psrbagev1.g | . . 3 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
| 13 | 11 | ffnd 6689 | . . . 4 ⊢ (𝜑 → 𝐵 Fn 𝐼) |
| 14 | 8, 13 | fndmexd 7880 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 15 | inidm 4190 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 16 | 7, 11, 12, 14, 14, 15 | off 7671 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺):𝐼⟶𝐶) |
| 17 | ovexd 7422 | . . 3 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) ∈ V) | |
| 18 | 12 | ffnd 6689 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
| 19 | 13, 18, 14, 14 | offun 7667 | . . 3 ⊢ (𝜑 → Fun (𝐵 ∘f · 𝐺)) |
| 20 | psrbagev1.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
| 21 | 20 | fvexi 6872 | . . . 4 ⊢ 0 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 23 | 9 | psrbagfsupp 21828 | . . . . 5 ⊢ (𝐵 ∈ 𝐷 → 𝐵 finSupp 0) |
| 24 | 8, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 finSupp 0) |
| 25 | 24 | fsuppimpd 9320 | . . 3 ⊢ (𝜑 → (𝐵 supp 0) ∈ Fin) |
| 26 | ssidd 3970 | . . . 4 ⊢ (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0)) | |
| 27 | 3, 20, 4 | mulg0 19006 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → (0 · 𝑧) = 0 ) |
| 28 | 27 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (0 · 𝑧) = 0 ) |
| 29 | c0ex 11168 | . . . . 5 ⊢ 0 ∈ V | |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 31 | 26, 28, 11, 12, 14, 30 | suppssof1 8178 | . . 3 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0)) |
| 32 | suppssfifsupp 9331 | . . 3 ⊢ ((((𝐵 ∘f · 𝐺) ∈ V ∧ Fun (𝐵 ∘f · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵 ∘f · 𝐺) finSupp 0 ) | |
| 33 | 17, 19, 22, 25, 31, 32 | syl32anc 1380 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) finSupp 0 ) |
| 34 | 16, 33 | jca 511 | 1 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ◡ccnv 5637 “ cima 5641 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 supp csupp 8139 ↑m cmap 8799 Fincfn 8918 finSupp cfsupp 9312 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 0gc0g 17402 Mndcmnd 18661 .gcmg 18999 CMndccmn 19710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mulg 19000 df-cmn 19712 |
| This theorem is referenced by: psrbagev2 21985 evlslem1 21989 |
| Copyright terms: Public domain | W3C validator |