| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagev1 | Structured version Visualization version GIF version | ||
| Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| psrbagev1.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psrbagev1.c | ⊢ 𝐶 = (Base‘𝑇) |
| psrbagev1.x | ⊢ · = (.g‘𝑇) |
| psrbagev1.z | ⊢ 0 = (0g‘𝑇) |
| psrbagev1.t | ⊢ (𝜑 → 𝑇 ∈ CMnd) |
| psrbagev1.b | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| psrbagev1.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
| Ref | Expression |
|---|---|
| psrbagev1 | ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbagev1.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ CMnd) | |
| 2 | 1 | cmnmndd 19701 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Mnd) |
| 3 | psrbagev1.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | psrbagev1.x | . . . . . 6 ⊢ · = (.g‘𝑇) | |
| 5 | 3, 4 | mulgnn0cl 18987 | . . . . 5 ⊢ ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶) → (𝑦 · 𝑧) ∈ 𝐶) |
| 6 | 5 | 3expb 1120 | . . . 4 ⊢ ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
| 7 | 2, 6 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶)) → (𝑦 · 𝑧) ∈ 𝐶) |
| 8 | psrbagev1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 9 | psrbagev1.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 10 | 9 | psrbagf 21843 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → 𝐵:𝐼⟶ℕ0) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵:𝐼⟶ℕ0) |
| 12 | psrbagev1.g | . . 3 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
| 13 | 11 | ffnd 6657 | . . . 4 ⊢ (𝜑 → 𝐵 Fn 𝐼) |
| 14 | 8, 13 | fndmexd 7844 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 15 | inidm 4180 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 16 | 7, 11, 12, 14, 14, 15 | off 7635 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺):𝐼⟶𝐶) |
| 17 | ovexd 7388 | . . 3 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) ∈ V) | |
| 18 | 12 | ffnd 6657 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐼) |
| 19 | 13, 18, 14, 14 | offun 7631 | . . 3 ⊢ (𝜑 → Fun (𝐵 ∘f · 𝐺)) |
| 20 | psrbagev1.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
| 21 | 20 | fvexi 6840 | . . . 4 ⊢ 0 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
| 23 | 9 | psrbagfsupp 21844 | . . . . 5 ⊢ (𝐵 ∈ 𝐷 → 𝐵 finSupp 0) |
| 24 | 8, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 finSupp 0) |
| 25 | 24 | fsuppimpd 9278 | . . 3 ⊢ (𝜑 → (𝐵 supp 0) ∈ Fin) |
| 26 | ssidd 3961 | . . . 4 ⊢ (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0)) | |
| 27 | 3, 20, 4 | mulg0 18971 | . . . . 5 ⊢ (𝑧 ∈ 𝐶 → (0 · 𝑧) = 0 ) |
| 28 | 27 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (0 · 𝑧) = 0 ) |
| 29 | c0ex 11128 | . . . . 5 ⊢ 0 ∈ V | |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 31 | 26, 28, 11, 12, 14, 30 | suppssof1 8139 | . . 3 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0)) |
| 32 | suppssfifsupp 9289 | . . 3 ⊢ ((((𝐵 ∘f · 𝐺) ∈ V ∧ Fun (𝐵 ∘f · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵 ∘f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵 ∘f · 𝐺) finSupp 0 ) | |
| 33 | 17, 19, 22, 25, 31, 32 | syl32anc 1380 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) finSupp 0 ) |
| 34 | 16, 33 | jca 511 | 1 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 ◡ccnv 5622 “ cima 5626 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 supp csupp 8100 ↑m cmap 8760 Fincfn 8879 finSupp cfsupp 9270 0cc0 11028 ℕcn 12146 ℕ0cn0 12402 Basecbs 17138 0gc0g 17361 Mndcmnd 18626 .gcmg 18964 CMndccmn 19677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-seq 13927 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mulg 18965 df-cmn 19679 |
| This theorem is referenced by: psrbagev2 22001 evlslem1 22005 |
| Copyright terms: Public domain | W3C validator |