MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagev1 Structured version   Visualization version   GIF version

Theorem psrbagev1 22018
Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
psrbagev1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrbagev1.c 𝐶 = (Base‘𝑇)
psrbagev1.x · = (.g𝑇)
psrbagev1.z 0 = (0g𝑇)
psrbagev1.t (𝜑𝑇 ∈ CMnd)
psrbagev1.b (𝜑𝐵𝐷)
psrbagev1.g (𝜑𝐺:𝐼𝐶)
Assertion
Ref Expression
psrbagev1 (𝜑 → ((𝐵f · 𝐺):𝐼𝐶 ∧ (𝐵f · 𝐺) finSupp 0 ))
Distinct variable groups:   𝐵,   ,𝐼
Allowed substitution hints:   𝜑()   𝐶()   𝐷()   𝑇()   · ()   𝐺()   0 ()

Proof of Theorem psrbagev1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbagev1.t . . . . 5 (𝜑𝑇 ∈ CMnd)
21cmnmndd 19722 . . . 4 (𝜑𝑇 ∈ Mnd)
3 psrbagev1.c . . . . . 6 𝐶 = (Base‘𝑇)
4 psrbagev1.x . . . . . 6 · = (.g𝑇)
53, 4mulgnn0cl 19009 . . . . 5 ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑧𝐶) → (𝑦 · 𝑧) ∈ 𝐶)
653expb 1120 . . . 4 ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 · 𝑧) ∈ 𝐶)
72, 6sylan 580 . . 3 ((𝜑 ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 · 𝑧) ∈ 𝐶)
8 psrbagev1.b . . . 4 (𝜑𝐵𝐷)
9 psrbagev1.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
109psrbagf 21861 . . . 4 (𝐵𝐷𝐵:𝐼⟶ℕ0)
118, 10syl 17 . . 3 (𝜑𝐵:𝐼⟶ℕ0)
12 psrbagev1.g . . 3 (𝜑𝐺:𝐼𝐶)
1311ffnd 6658 . . . 4 (𝜑𝐵 Fn 𝐼)
148, 13fndmexd 7840 . . 3 (𝜑𝐼 ∈ V)
15 inidm 4176 . . 3 (𝐼𝐼) = 𝐼
167, 11, 12, 14, 14, 15off 7634 . 2 (𝜑 → (𝐵f · 𝐺):𝐼𝐶)
17 ovexd 7387 . . 3 (𝜑 → (𝐵f · 𝐺) ∈ V)
1812ffnd 6658 . . . 4 (𝜑𝐺 Fn 𝐼)
1913, 18, 14, 14offun 7630 . . 3 (𝜑 → Fun (𝐵f · 𝐺))
20 psrbagev1.z . . . . 5 0 = (0g𝑇)
2120fvexi 6842 . . . 4 0 ∈ V
2221a1i 11 . . 3 (𝜑0 ∈ V)
239psrbagfsupp 21862 . . . . 5 (𝐵𝐷𝐵 finSupp 0)
248, 23syl 17 . . . 4 (𝜑𝐵 finSupp 0)
2524fsuppimpd 9259 . . 3 (𝜑 → (𝐵 supp 0) ∈ Fin)
26 ssidd 3953 . . . 4 (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0))
273, 20, 4mulg0 18993 . . . . 5 (𝑧𝐶 → (0 · 𝑧) = 0 )
2827adantl 481 . . . 4 ((𝜑𝑧𝐶) → (0 · 𝑧) = 0 )
29 c0ex 11112 . . . . 5 0 ∈ V
3029a1i 11 . . . 4 (𝜑 → 0 ∈ V)
3126, 28, 11, 12, 14, 30suppssof1 8135 . . 3 (𝜑 → ((𝐵f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))
32 suppssfifsupp 9270 . . 3 ((((𝐵f · 𝐺) ∈ V ∧ Fun (𝐵f · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵f · 𝐺) finSupp 0 )
3317, 19, 22, 25, 31, 32syl32anc 1380 . 2 (𝜑 → (𝐵f · 𝐺) finSupp 0 )
3416, 33jca 511 1 (𝜑 → ((𝐵f · 𝐺):𝐼𝐶 ∧ (𝐵f · 𝐺) finSupp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897   class class class wbr 5093  ccnv 5618  cima 5622  Fun wfun 6481  wf 6483  cfv 6487  (class class class)co 7352  f cof 7614   supp csupp 8096  m cmap 8756  Fincfn 8875   finSupp cfsupp 9251  0cc0 11012  cn 12131  0cn0 12387  Basecbs 17126  0gc0g 17349  Mndcmnd 18648  .gcmg 18986  CMndccmn 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-seq 13915  df-0g 17351  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mulg 18987  df-cmn 19700
This theorem is referenced by:  psrbagev2  22019  evlslem1  22023
  Copyright terms: Public domain W3C validator