MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagev1 Structured version   Visualization version   GIF version

Theorem psrbagev1 21285
Description: A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
psrbagev1.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrbagev1.c 𝐶 = (Base‘𝑇)
psrbagev1.x · = (.g𝑇)
psrbagev1.z 0 = (0g𝑇)
psrbagev1.t (𝜑𝑇 ∈ CMnd)
psrbagev1.b (𝜑𝐵𝐷)
psrbagev1.g (𝜑𝐺:𝐼𝐶)
Assertion
Ref Expression
psrbagev1 (𝜑 → ((𝐵f · 𝐺):𝐼𝐶 ∧ (𝐵f · 𝐺) finSupp 0 ))
Distinct variable groups:   𝐵,   ,𝐼
Allowed substitution hints:   𝜑()   𝐶()   𝐷()   𝑇()   · ()   𝐺()   0 ()

Proof of Theorem psrbagev1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbagev1.t . . . . 5 (𝜑𝑇 ∈ CMnd)
21cmnmndd 19409 . . . 4 (𝜑𝑇 ∈ Mnd)
3 psrbagev1.c . . . . . 6 𝐶 = (Base‘𝑇)
4 psrbagev1.x . . . . . 6 · = (.g𝑇)
53, 4mulgnn0cl 18720 . . . . 5 ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑧𝐶) → (𝑦 · 𝑧) ∈ 𝐶)
653expb 1119 . . . 4 ((𝑇 ∈ Mnd ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 · 𝑧) ∈ 𝐶)
72, 6sylan 580 . . 3 ((𝜑 ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 · 𝑧) ∈ 𝐶)
8 psrbagev1.b . . . 4 (𝜑𝐵𝐷)
9 psrbagev1.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
109psrbagf 21121 . . . 4 (𝐵𝐷𝐵:𝐼⟶ℕ0)
118, 10syl 17 . . 3 (𝜑𝐵:𝐼⟶ℕ0)
12 psrbagev1.g . . 3 (𝜑𝐺:𝐼𝐶)
1311ffnd 6601 . . . 4 (𝜑𝐵 Fn 𝐼)
148, 13fndmexd 7753 . . 3 (𝜑𝐼 ∈ V)
15 inidm 4152 . . 3 (𝐼𝐼) = 𝐼
167, 11, 12, 14, 14, 15off 7551 . 2 (𝜑 → (𝐵f · 𝐺):𝐼𝐶)
17 ovexd 7310 . . 3 (𝜑 → (𝐵f · 𝐺) ∈ V)
1812ffnd 6601 . . . 4 (𝜑𝐺 Fn 𝐼)
1913, 18, 14, 14offun 7547 . . 3 (𝜑 → Fun (𝐵f · 𝐺))
20 psrbagev1.z . . . . 5 0 = (0g𝑇)
2120fvexi 6788 . . . 4 0 ∈ V
2221a1i 11 . . 3 (𝜑0 ∈ V)
239psrbagfsupp 21123 . . . . 5 (𝐵𝐷𝐵 finSupp 0)
248, 23syl 17 . . . 4 (𝜑𝐵 finSupp 0)
2524fsuppimpd 9135 . . 3 (𝜑 → (𝐵 supp 0) ∈ Fin)
26 ssidd 3944 . . . 4 (𝜑 → (𝐵 supp 0) ⊆ (𝐵 supp 0))
273, 20, 4mulg0 18707 . . . . 5 (𝑧𝐶 → (0 · 𝑧) = 0 )
2827adantl 482 . . . 4 ((𝜑𝑧𝐶) → (0 · 𝑧) = 0 )
29 c0ex 10969 . . . . 5 0 ∈ V
3029a1i 11 . . . 4 (𝜑 → 0 ∈ V)
3126, 28, 11, 12, 14, 30suppssof1 8015 . . 3 (𝜑 → ((𝐵f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))
32 suppssfifsupp 9143 . . 3 ((((𝐵f · 𝐺) ∈ V ∧ Fun (𝐵f · 𝐺) ∧ 0 ∈ V) ∧ ((𝐵 supp 0) ∈ Fin ∧ ((𝐵f · 𝐺) supp 0 ) ⊆ (𝐵 supp 0))) → (𝐵f · 𝐺) finSupp 0 )
3317, 19, 22, 25, 31, 32syl32anc 1377 . 2 (𝜑 → (𝐵f · 𝐺) finSupp 0 )
3416, 33jca 512 1 (𝜑 → ((𝐵f · 𝐺):𝐼𝐶 ∧ (𝐵f · 𝐺) finSupp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  wss 3887   class class class wbr 5074  ccnv 5588  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  0cc0 10871  cn 11973  0cn0 12233  Basecbs 16912  0gc0g 17150  Mndcmnd 18385  .gcmg 18700  CMndccmn 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mulg 18701  df-cmn 19388
This theorem is referenced by:  psrbagev2  21287  evlslem1  21292
  Copyright terms: Public domain W3C validator