![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsummptres2 | Structured version Visualization version GIF version |
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
Ref | Expression |
---|---|
gsummptres2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptres2.z | ⊢ 0 = (0g‘𝐺) |
gsummptres2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptres2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummptres2.0 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝑆)) → 𝑌 = 0 ) |
gsummptres2.1 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
gsummptres2.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
gsummptres2.2 | ⊢ (𝜑 → 𝑆 ⊆ 𝐴) |
Ref | Expression |
---|---|
gsummptres2 | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptres2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptres2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2740 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | gsummptres2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | gsummptres2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | gsummptres2.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐵) | |
7 | 5 | mptexd 7261 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑌) ∈ V) |
8 | funmpt 6616 | . . . . 5 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝑌) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → Fun (𝑥 ∈ 𝐴 ↦ 𝑌)) |
10 | 2 | fvexi 6934 | . . . . 5 ⊢ 0 ∈ V |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
12 | gsummptres2.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
13 | gsummptres2.0 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝑆)) → 𝑌 = 0 ) | |
14 | 13, 5 | suppss2 8241 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑌) supp 0 ) ⊆ 𝑆) |
15 | suppssfifsupp 9449 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ↦ 𝑌) ∈ V ∧ Fun (𝑥 ∈ 𝐴 ↦ 𝑌) ∧ 0 ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑥 ∈ 𝐴 ↦ 𝑌) supp 0 ) ⊆ 𝑆)) → (𝑥 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) | |
16 | 7, 9, 11, 12, 14, 15 | syl32anc 1378 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) |
17 | disjdif 4495 | . . . 4 ⊢ (𝑆 ∩ (𝐴 ∖ 𝑆)) = ∅ | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑆 ∩ (𝐴 ∖ 𝑆)) = ∅) |
19 | gsummptres2.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐴) | |
20 | undif 4505 | . . . . 5 ⊢ (𝑆 ⊆ 𝐴 ↔ (𝑆 ∪ (𝐴 ∖ 𝑆)) = 𝐴) | |
21 | 19, 20 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑆 ∪ (𝐴 ∖ 𝑆)) = 𝐴) |
22 | 21 | eqcomd 2746 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑆 ∪ (𝐴 ∖ 𝑆))) |
23 | 1, 2, 3, 4, 5, 6, 16, 18, 22 | gsumsplit2 19971 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌)))) |
24 | 13 | mpteq2dva 5266 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌) = (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 )) |
25 | 24 | oveq2d 7464 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 ))) |
26 | 4 | cmnmndd 19846 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
27 | 5 | difexd 5349 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝑆) ∈ V) |
28 | 2 | gsumz 18871 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ (𝐴 ∖ 𝑆) ∈ V) → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 )) = 0 ) |
29 | 26, 27, 28 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 )) = 0 ) |
30 | 25, 29 | eqtrd 2780 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌)) = 0 ) |
31 | 30 | oveq2d 7464 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌))) = ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺) 0 )) |
32 | 6 | ralrimiva 3152 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑌 ∈ 𝐵) |
33 | ssralv 4077 | . . . . 5 ⊢ (𝑆 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 𝑌 ∈ 𝐵 → ∀𝑥 ∈ 𝑆 𝑌 ∈ 𝐵)) | |
34 | 19, 32, 33 | sylc 65 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝑌 ∈ 𝐵) |
35 | 1, 4, 12, 34 | gsummptcl 20009 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌)) ∈ 𝐵) |
36 | 1, 3, 2 | mndrid 18793 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
37 | 26, 35, 36 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
38 | 23, 31, 37 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ↦ cmpt 5249 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 Fincfn 9003 finSupp cfsupp 9431 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Σg cgsu 17500 Mndcmnd 18772 CMndccmn 19822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-cntz 19357 df-cmn 19824 |
This theorem is referenced by: elrspunidl 33421 gsummoncoe1fzo 33583 |
Copyright terms: Public domain | W3C validator |