Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummptres2 Structured version   Visualization version   GIF version

Theorem gsummptres2 30741
 Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
gsummptres2.b 𝐵 = (Base‘𝐺)
gsummptres2.z 0 = (0g𝐺)
gsummptres2.g (𝜑𝐺 ∈ CMnd)
gsummptres2.a (𝜑𝐴𝑉)
gsummptres2.0 ((𝜑𝑥 ∈ (𝐴𝑆)) → 𝑌 = 0 )
gsummptres2.1 (𝜑𝑆 ∈ Fin)
gsummptres2.y ((𝜑𝑥𝐴) → 𝑌𝐵)
gsummptres2.2 (𝜑𝑆𝐴)
Assertion
Ref Expression
gsummptres2 (𝜑 → (𝐺 Σg (𝑥𝐴𝑌)) = (𝐺 Σg (𝑥𝑆𝑌)))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑌(𝑥)

Proof of Theorem gsummptres2
StepHypRef Expression
1 gsummptres2.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptres2.z . . 3 0 = (0g𝐺)
3 eqid 2801 . . 3 (+g𝐺) = (+g𝐺)
4 gsummptres2.g . . 3 (𝜑𝐺 ∈ CMnd)
5 gsummptres2.a . . 3 (𝜑𝐴𝑉)
6 gsummptres2.y . . 3 ((𝜑𝑥𝐴) → 𝑌𝐵)
75mptexd 6968 . . . 4 (𝜑 → (𝑥𝐴𝑌) ∈ V)
8 funmpt 6366 . . . . 5 Fun (𝑥𝐴𝑌)
98a1i 11 . . . 4 (𝜑 → Fun (𝑥𝐴𝑌))
102fvexi 6663 . . . . 5 0 ∈ V
1110a1i 11 . . . 4 (𝜑0 ∈ V)
12 gsummptres2.1 . . . 4 (𝜑𝑆 ∈ Fin)
13 gsummptres2.0 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝑆)) → 𝑌 = 0 )
1413, 5suppss2 7851 . . . 4 (𝜑 → ((𝑥𝐴𝑌) supp 0 ) ⊆ 𝑆)
15 suppssfifsupp 8836 . . . 4 ((((𝑥𝐴𝑌) ∈ V ∧ Fun (𝑥𝐴𝑌) ∧ 0 ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑥𝐴𝑌) supp 0 ) ⊆ 𝑆)) → (𝑥𝐴𝑌) finSupp 0 )
167, 9, 11, 12, 14, 15syl32anc 1375 . . 3 (𝜑 → (𝑥𝐴𝑌) finSupp 0 )
17 disjdif 4382 . . . 4 (𝑆 ∩ (𝐴𝑆)) = ∅
1817a1i 11 . . 3 (𝜑 → (𝑆 ∩ (𝐴𝑆)) = ∅)
19 gsummptres2.2 . . . . 5 (𝜑𝑆𝐴)
20 undif 4391 . . . . 5 (𝑆𝐴 ↔ (𝑆 ∪ (𝐴𝑆)) = 𝐴)
2119, 20sylib 221 . . . 4 (𝜑 → (𝑆 ∪ (𝐴𝑆)) = 𝐴)
2221eqcomd 2807 . . 3 (𝜑𝐴 = (𝑆 ∪ (𝐴𝑆)))
231, 2, 3, 4, 5, 6, 16, 18, 22gsumsplit2 19045 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝑌)) = ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 𝑌))))
2413mpteq2dva 5128 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝑆) ↦ 𝑌) = (𝑥 ∈ (𝐴𝑆) ↦ 0 ))
2524oveq2d 7155 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 0 )))
264cmnmndd 18924 . . . . 5 (𝜑𝐺 ∈ Mnd)
27 difexg 5198 . . . . . 6 (𝐴𝑉 → (𝐴𝑆) ∈ V)
285, 27syl 17 . . . . 5 (𝜑 → (𝐴𝑆) ∈ V)
292gsumz 17995 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝐴𝑆) ∈ V) → (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 0 )) = 0 )
3026, 28, 29syl2anc 587 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 0 )) = 0 )
3125, 30eqtrd 2836 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 𝑌)) = 0 )
3231oveq2d 7155 . 2 (𝜑 → ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 𝑌))) = ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺) 0 ))
336ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑥𝐴 𝑌𝐵)
34 ssralv 3984 . . . . 5 (𝑆𝐴 → (∀𝑥𝐴 𝑌𝐵 → ∀𝑥𝑆 𝑌𝐵))
3519, 33, 34sylc 65 . . . 4 (𝜑 → ∀𝑥𝑆 𝑌𝐵)
361, 4, 12, 35gsummptcl 19083 . . 3 (𝜑 → (𝐺 Σg (𝑥𝑆𝑌)) ∈ 𝐵)
371, 3, 2mndrid 17927 . . 3 ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥𝑆𝑌)) ∈ 𝐵) → ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺) 0 ) = (𝐺 Σg (𝑥𝑆𝑌)))
3826, 36, 37syl2anc 587 . 2 (𝜑 → ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺) 0 ) = (𝐺 Σg (𝑥𝑆𝑌)))
3923, 32, 383eqtrd 2840 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝑌)) = (𝐺 Σg (𝑥𝑆𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  Vcvv 3444   ∖ cdif 3881   ∪ cun 3882   ∩ cin 3883   ⊆ wss 3884  ∅c0 4246   class class class wbr 5033   ↦ cmpt 5113  Fun wfun 6322  ‘cfv 6328  (class class class)co 7139   supp csupp 7817  Fincfn 8496   finSupp cfsupp 8821  Basecbs 16478  +gcplusg 16560  0gc0g 16708   Σg cgsu 16709  Mndcmnd 17906  CMndccmn 18901 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-gsum 16711  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-cntz 18442  df-cmn 18903 This theorem is referenced by:  elrspunidl  31017
 Copyright terms: Public domain W3C validator