Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummptres2 Structured version   Visualization version   GIF version

Theorem gsummptres2 32475
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
gsummptres2.b 𝐵 = (Base‘𝐺)
gsummptres2.z 0 = (0g𝐺)
gsummptres2.g (𝜑𝐺 ∈ CMnd)
gsummptres2.a (𝜑𝐴𝑉)
gsummptres2.0 ((𝜑𝑥 ∈ (𝐴𝑆)) → 𝑌 = 0 )
gsummptres2.1 (𝜑𝑆 ∈ Fin)
gsummptres2.y ((𝜑𝑥𝐴) → 𝑌𝐵)
gsummptres2.2 (𝜑𝑆𝐴)
Assertion
Ref Expression
gsummptres2 (𝜑 → (𝐺 Σg (𝑥𝐴𝑌)) = (𝐺 Σg (𝑥𝑆𝑌)))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑌(𝑥)

Proof of Theorem gsummptres2
StepHypRef Expression
1 gsummptres2.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptres2.z . . 3 0 = (0g𝐺)
3 eqid 2730 . . 3 (+g𝐺) = (+g𝐺)
4 gsummptres2.g . . 3 (𝜑𝐺 ∈ CMnd)
5 gsummptres2.a . . 3 (𝜑𝐴𝑉)
6 gsummptres2.y . . 3 ((𝜑𝑥𝐴) → 𝑌𝐵)
75mptexd 7227 . . . 4 (𝜑 → (𝑥𝐴𝑌) ∈ V)
8 funmpt 6585 . . . . 5 Fun (𝑥𝐴𝑌)
98a1i 11 . . . 4 (𝜑 → Fun (𝑥𝐴𝑌))
102fvexi 6904 . . . . 5 0 ∈ V
1110a1i 11 . . . 4 (𝜑0 ∈ V)
12 gsummptres2.1 . . . 4 (𝜑𝑆 ∈ Fin)
13 gsummptres2.0 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝑆)) → 𝑌 = 0 )
1413, 5suppss2 8187 . . . 4 (𝜑 → ((𝑥𝐴𝑌) supp 0 ) ⊆ 𝑆)
15 suppssfifsupp 9380 . . . 4 ((((𝑥𝐴𝑌) ∈ V ∧ Fun (𝑥𝐴𝑌) ∧ 0 ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑥𝐴𝑌) supp 0 ) ⊆ 𝑆)) → (𝑥𝐴𝑌) finSupp 0 )
167, 9, 11, 12, 14, 15syl32anc 1376 . . 3 (𝜑 → (𝑥𝐴𝑌) finSupp 0 )
17 disjdif 4470 . . . 4 (𝑆 ∩ (𝐴𝑆)) = ∅
1817a1i 11 . . 3 (𝜑 → (𝑆 ∩ (𝐴𝑆)) = ∅)
19 gsummptres2.2 . . . . 5 (𝜑𝑆𝐴)
20 undif 4480 . . . . 5 (𝑆𝐴 ↔ (𝑆 ∪ (𝐴𝑆)) = 𝐴)
2119, 20sylib 217 . . . 4 (𝜑 → (𝑆 ∪ (𝐴𝑆)) = 𝐴)
2221eqcomd 2736 . . 3 (𝜑𝐴 = (𝑆 ∪ (𝐴𝑆)))
231, 2, 3, 4, 5, 6, 16, 18, 22gsumsplit2 19838 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝑌)) = ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 𝑌))))
2413mpteq2dva 5247 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝑆) ↦ 𝑌) = (𝑥 ∈ (𝐴𝑆) ↦ 0 ))
2524oveq2d 7427 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 0 )))
264cmnmndd 19713 . . . . 5 (𝜑𝐺 ∈ Mnd)
275difexd 5328 . . . . 5 (𝜑 → (𝐴𝑆) ∈ V)
282gsumz 18753 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝐴𝑆) ∈ V) → (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 0 )) = 0 )
2926, 27, 28syl2anc 582 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 0 )) = 0 )
3025, 29eqtrd 2770 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 𝑌)) = 0 )
3130oveq2d 7427 . 2 (𝜑 → ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺)(𝐺 Σg (𝑥 ∈ (𝐴𝑆) ↦ 𝑌))) = ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺) 0 ))
326ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑥𝐴 𝑌𝐵)
33 ssralv 4049 . . . . 5 (𝑆𝐴 → (∀𝑥𝐴 𝑌𝐵 → ∀𝑥𝑆 𝑌𝐵))
3419, 32, 33sylc 65 . . . 4 (𝜑 → ∀𝑥𝑆 𝑌𝐵)
351, 4, 12, 34gsummptcl 19876 . . 3 (𝜑 → (𝐺 Σg (𝑥𝑆𝑌)) ∈ 𝐵)
361, 3, 2mndrid 18680 . . 3 ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥𝑆𝑌)) ∈ 𝐵) → ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺) 0 ) = (𝐺 Σg (𝑥𝑆𝑌)))
3726, 35, 36syl2anc 582 . 2 (𝜑 → ((𝐺 Σg (𝑥𝑆𝑌))(+g𝐺) 0 ) = (𝐺 Σg (𝑥𝑆𝑌)))
3823, 31, 373eqtrd 2774 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝑌)) = (𝐺 Σg (𝑥𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wral 3059  Vcvv 3472  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321   class class class wbr 5147  cmpt 5230  Fun wfun 6536  cfv 6542  (class class class)co 7411   supp csupp 8148  Fincfn 8941   finSupp cfsupp 9363  Basecbs 17148  +gcplusg 17201  0gc0g 17389   Σg cgsu 17390  Mndcmnd 18659  CMndccmn 19689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-0g 17391  df-gsum 17392  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-cntz 19222  df-cmn 19691
This theorem is referenced by:  elrspunidl  32820  gsummoncoe1fzo  32943
  Copyright terms: Public domain W3C validator