![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsummptres2 | Structured version Visualization version GIF version |
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
Ref | Expression |
---|---|
gsummptres2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptres2.z | ⊢ 0 = (0g‘𝐺) |
gsummptres2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptres2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummptres2.0 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝑆)) → 𝑌 = 0 ) |
gsummptres2.1 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
gsummptres2.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
gsummptres2.2 | ⊢ (𝜑 → 𝑆 ⊆ 𝐴) |
Ref | Expression |
---|---|
gsummptres2 | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptres2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptres2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2728 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | gsummptres2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | gsummptres2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | gsummptres2.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐵) | |
7 | 5 | mptexd 7230 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑌) ∈ V) |
8 | funmpt 6585 | . . . . 5 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝑌) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → Fun (𝑥 ∈ 𝐴 ↦ 𝑌)) |
10 | 2 | fvexi 6905 | . . . . 5 ⊢ 0 ∈ V |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
12 | gsummptres2.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
13 | gsummptres2.0 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝑆)) → 𝑌 = 0 ) | |
14 | 13, 5 | suppss2 8199 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑌) supp 0 ) ⊆ 𝑆) |
15 | suppssfifsupp 9397 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ↦ 𝑌) ∈ V ∧ Fun (𝑥 ∈ 𝐴 ↦ 𝑌) ∧ 0 ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑥 ∈ 𝐴 ↦ 𝑌) supp 0 ) ⊆ 𝑆)) → (𝑥 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) | |
16 | 7, 9, 11, 12, 14, 15 | syl32anc 1376 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) |
17 | disjdif 4467 | . . . 4 ⊢ (𝑆 ∩ (𝐴 ∖ 𝑆)) = ∅ | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑆 ∩ (𝐴 ∖ 𝑆)) = ∅) |
19 | gsummptres2.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐴) | |
20 | undif 4477 | . . . . 5 ⊢ (𝑆 ⊆ 𝐴 ↔ (𝑆 ∪ (𝐴 ∖ 𝑆)) = 𝐴) | |
21 | 19, 20 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝑆 ∪ (𝐴 ∖ 𝑆)) = 𝐴) |
22 | 21 | eqcomd 2734 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑆 ∪ (𝐴 ∖ 𝑆))) |
23 | 1, 2, 3, 4, 5, 6, 16, 18, 22 | gsumsplit2 19877 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌)))) |
24 | 13 | mpteq2dva 5242 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌) = (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 )) |
25 | 24 | oveq2d 7430 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 ))) |
26 | 4 | cmnmndd 19752 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
27 | 5 | difexd 5325 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝑆) ∈ V) |
28 | 2 | gsumz 18781 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ (𝐴 ∖ 𝑆) ∈ V) → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 )) = 0 ) |
29 | 26, 27, 28 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 )) = 0 ) |
30 | 25, 29 | eqtrd 2768 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌)) = 0 ) |
31 | 30 | oveq2d 7430 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌))) = ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺) 0 )) |
32 | 6 | ralrimiva 3142 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑌 ∈ 𝐵) |
33 | ssralv 4046 | . . . . 5 ⊢ (𝑆 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 𝑌 ∈ 𝐵 → ∀𝑥 ∈ 𝑆 𝑌 ∈ 𝐵)) | |
34 | 19, 32, 33 | sylc 65 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝑌 ∈ 𝐵) |
35 | 1, 4, 12, 34 | gsummptcl 19915 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌)) ∈ 𝐵) |
36 | 1, 3, 2 | mndrid 18708 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
37 | 26, 35, 36 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
38 | 23, 31, 37 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 Vcvv 3470 ∖ cdif 3942 ∪ cun 3943 ∩ cin 3944 ⊆ wss 3945 ∅c0 4318 class class class wbr 5142 ↦ cmpt 5225 Fun wfun 6536 ‘cfv 6542 (class class class)co 7414 supp csupp 8159 Fincfn 8957 finSupp cfsupp 9379 Basecbs 17173 +gcplusg 17226 0gc0g 17414 Σg cgsu 17415 Mndcmnd 18687 CMndccmn 19728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-0g 17416 df-gsum 17417 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-cntz 19261 df-cmn 19730 |
This theorem is referenced by: elrspunidl 33138 gsummoncoe1fzo 33258 |
Copyright terms: Public domain | W3C validator |