Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsummptres2 | Structured version Visualization version GIF version |
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
Ref | Expression |
---|---|
gsummptres2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptres2.z | ⊢ 0 = (0g‘𝐺) |
gsummptres2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptres2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummptres2.0 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝑆)) → 𝑌 = 0 ) |
gsummptres2.1 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
gsummptres2.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
gsummptres2.2 | ⊢ (𝜑 → 𝑆 ⊆ 𝐴) |
Ref | Expression |
---|---|
gsummptres2 | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptres2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptres2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2740 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | gsummptres2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | gsummptres2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | gsummptres2.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐵) | |
7 | 5 | mptexd 7097 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑌) ∈ V) |
8 | funmpt 6470 | . . . . 5 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝑌) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → Fun (𝑥 ∈ 𝐴 ↦ 𝑌)) |
10 | 2 | fvexi 6785 | . . . . 5 ⊢ 0 ∈ V |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
12 | gsummptres2.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
13 | gsummptres2.0 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝑆)) → 𝑌 = 0 ) | |
14 | 13, 5 | suppss2 8008 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑌) supp 0 ) ⊆ 𝑆) |
15 | suppssfifsupp 9131 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ↦ 𝑌) ∈ V ∧ Fun (𝑥 ∈ 𝐴 ↦ 𝑌) ∧ 0 ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑥 ∈ 𝐴 ↦ 𝑌) supp 0 ) ⊆ 𝑆)) → (𝑥 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) | |
16 | 7, 9, 11, 12, 14, 15 | syl32anc 1377 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) |
17 | disjdif 4411 | . . . 4 ⊢ (𝑆 ∩ (𝐴 ∖ 𝑆)) = ∅ | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑆 ∩ (𝐴 ∖ 𝑆)) = ∅) |
19 | gsummptres2.2 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐴) | |
20 | undif 4421 | . . . . 5 ⊢ (𝑆 ⊆ 𝐴 ↔ (𝑆 ∪ (𝐴 ∖ 𝑆)) = 𝐴) | |
21 | 19, 20 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝑆 ∪ (𝐴 ∖ 𝑆)) = 𝐴) |
22 | 21 | eqcomd 2746 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑆 ∪ (𝐴 ∖ 𝑆))) |
23 | 1, 2, 3, 4, 5, 6, 16, 18, 22 | gsumsplit2 19541 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌)))) |
24 | 13 | mpteq2dva 5179 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌) = (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 )) |
25 | 24 | oveq2d 7288 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 ))) |
26 | 4 | cmnmndd 19420 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
27 | 5 | difexd 5257 | . . . . 5 ⊢ (𝜑 → (𝐴 ∖ 𝑆) ∈ V) |
28 | 2 | gsumz 18485 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ (𝐴 ∖ 𝑆) ∈ V) → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 )) = 0 ) |
29 | 26, 27, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 0 )) = 0 ) |
30 | 25, 29 | eqtrd 2780 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌)) = 0 ) |
31 | 30 | oveq2d 7288 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (𝐴 ∖ 𝑆) ↦ 𝑌))) = ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺) 0 )) |
32 | 6 | ralrimiva 3110 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑌 ∈ 𝐵) |
33 | ssralv 3992 | . . . . 5 ⊢ (𝑆 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 𝑌 ∈ 𝐵 → ∀𝑥 ∈ 𝑆 𝑌 ∈ 𝐵)) | |
34 | 19, 32, 33 | sylc 65 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝑌 ∈ 𝐵) |
35 | 1, 4, 12, 34 | gsummptcl 19579 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌)) ∈ 𝐵) |
36 | 1, 3, 2 | mndrid 18417 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌)) ∈ 𝐵) → ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
37 | 26, 35, 36 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))(+g‘𝐺) 0 ) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
38 | 23, 31, 37 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 ∖ cdif 3889 ∪ cun 3890 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 class class class wbr 5079 ↦ cmpt 5162 Fun wfun 6426 ‘cfv 6432 (class class class)co 7272 supp csupp 7969 Fincfn 8725 finSupp cfsupp 9116 Basecbs 16923 +gcplusg 16973 0gc0g 17161 Σg cgsu 17162 Mndcmnd 18396 CMndccmn 19397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-of 7528 df-om 7708 df-1st 7825 df-2nd 7826 df-supp 7970 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-fsupp 9117 df-oi 9257 df-card 9708 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-nn 11985 df-2 12047 df-n0 12245 df-z 12331 df-uz 12594 df-fz 13251 df-fzo 13394 df-seq 13733 df-hash 14056 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ress 16953 df-plusg 16986 df-0g 17163 df-gsum 17164 df-mre 17306 df-mrc 17307 df-acs 17309 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-submnd 18442 df-cntz 18934 df-cmn 19399 |
This theorem is referenced by: elrspunidl 31615 |
Copyright terms: Public domain | W3C validator |