MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagev1OLD Structured version   Visualization version   GIF version

Theorem psrbagev1OLD 22027
Description: Obsolete version of psrbagev1 22026 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
psrbagev1.d 𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
psrbagev1.c 𝐢 = (Baseβ€˜π‘‡)
psrbagev1.x Β· = (.gβ€˜π‘‡)
psrbagev1.z 0 = (0gβ€˜π‘‡)
psrbagev1.t (πœ‘ β†’ 𝑇 ∈ CMnd)
psrbagev1.b (πœ‘ β†’ 𝐡 ∈ 𝐷)
psrbagev1.g (πœ‘ β†’ 𝐺:𝐼⟢𝐢)
psrbagev1.i (πœ‘ β†’ 𝐼 ∈ π‘Š)
Assertion
Ref Expression
psrbagev1OLD (πœ‘ β†’ ((𝐡 ∘f Β· 𝐺):𝐼⟢𝐢 ∧ (𝐡 ∘f Β· 𝐺) finSupp 0 ))
Distinct variable groups:   𝐡,β„Ž   β„Ž,𝐼
Allowed substitution hints:   πœ‘(β„Ž)   𝐢(β„Ž)   𝐷(β„Ž)   𝑇(β„Ž)   Β· (β„Ž)   𝐺(β„Ž)   π‘Š(β„Ž)   0 (β„Ž)

Proof of Theorem psrbagev1OLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbagev1.t . . . . 5 (πœ‘ β†’ 𝑇 ∈ CMnd)
21cmnmndd 19761 . . . 4 (πœ‘ β†’ 𝑇 ∈ Mnd)
3 psrbagev1.c . . . . . 6 𝐢 = (Baseβ€˜π‘‡)
4 psrbagev1.x . . . . . 6 Β· = (.gβ€˜π‘‡)
53, 4mulgnn0cl 19047 . . . . 5 ((𝑇 ∈ Mnd ∧ 𝑦 ∈ β„•0 ∧ 𝑧 ∈ 𝐢) β†’ (𝑦 Β· 𝑧) ∈ 𝐢)
653expb 1117 . . . 4 ((𝑇 ∈ Mnd ∧ (𝑦 ∈ β„•0 ∧ 𝑧 ∈ 𝐢)) β†’ (𝑦 Β· 𝑧) ∈ 𝐢)
72, 6sylan 578 . . 3 ((πœ‘ ∧ (𝑦 ∈ β„•0 ∧ 𝑧 ∈ 𝐢)) β†’ (𝑦 Β· 𝑧) ∈ 𝐢)
8 psrbagev1.i . . . 4 (πœ‘ β†’ 𝐼 ∈ π‘Š)
9 psrbagev1.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝐷)
10 psrbagev1.d . . . . 5 𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
1110psrbagfOLD 21854 . . . 4 ((𝐼 ∈ π‘Š ∧ 𝐡 ∈ 𝐷) β†’ 𝐡:πΌβŸΆβ„•0)
128, 9, 11syl2anc 582 . . 3 (πœ‘ β†’ 𝐡:πΌβŸΆβ„•0)
13 psrbagev1.g . . 3 (πœ‘ β†’ 𝐺:𝐼⟢𝐢)
14 inidm 4213 . . 3 (𝐼 ∩ 𝐼) = 𝐼
157, 12, 13, 8, 8, 14off 7699 . 2 (πœ‘ β†’ (𝐡 ∘f Β· 𝐺):𝐼⟢𝐢)
16 ovexd 7450 . . 3 (πœ‘ β†’ (𝐡 ∘f Β· 𝐺) ∈ V)
1712ffnd 6717 . . . 4 (πœ‘ β†’ 𝐡 Fn 𝐼)
1813ffnd 6717 . . . 4 (πœ‘ β†’ 𝐺 Fn 𝐼)
1917, 18, 8, 8offun 7695 . . 3 (πœ‘ β†’ Fun (𝐡 ∘f Β· 𝐺))
20 psrbagev1.z . . . . 5 0 = (0gβ€˜π‘‡)
2120fvexi 6905 . . . 4 0 ∈ V
2221a1i 11 . . 3 (πœ‘ β†’ 0 ∈ V)
2310psrbagfsuppOLD 21856 . . . . 5 ((𝐡 ∈ 𝐷 ∧ 𝐼 ∈ π‘Š) β†’ 𝐡 finSupp 0)
249, 8, 23syl2anc 582 . . . 4 (πœ‘ β†’ 𝐡 finSupp 0)
2524fsuppimpd 9391 . . 3 (πœ‘ β†’ (𝐡 supp 0) ∈ Fin)
26 ssidd 3996 . . . 4 (πœ‘ β†’ (𝐡 supp 0) βŠ† (𝐡 supp 0))
273, 20, 4mulg0 19032 . . . . 5 (𝑧 ∈ 𝐢 β†’ (0 Β· 𝑧) = 0 )
2827adantl 480 . . . 4 ((πœ‘ ∧ 𝑧 ∈ 𝐢) β†’ (0 Β· 𝑧) = 0 )
29 c0ex 11236 . . . . 5 0 ∈ V
3029a1i 11 . . . 4 (πœ‘ β†’ 0 ∈ V)
3126, 28, 12, 13, 8, 30suppssof1 8201 . . 3 (πœ‘ β†’ ((𝐡 ∘f Β· 𝐺) supp 0 ) βŠ† (𝐡 supp 0))
32 suppssfifsupp 9401 . . 3 ((((𝐡 ∘f Β· 𝐺) ∈ V ∧ Fun (𝐡 ∘f Β· 𝐺) ∧ 0 ∈ V) ∧ ((𝐡 supp 0) ∈ Fin ∧ ((𝐡 ∘f Β· 𝐺) supp 0 ) βŠ† (𝐡 supp 0))) β†’ (𝐡 ∘f Β· 𝐺) finSupp 0 )
3316, 19, 22, 25, 31, 32syl32anc 1375 . 2 (πœ‘ β†’ (𝐡 ∘f Β· 𝐺) finSupp 0 )
3415, 33jca 510 1 (πœ‘ β†’ ((𝐡 ∘f Β· 𝐺):𝐼⟢𝐢 ∧ (𝐡 ∘f Β· 𝐺) finSupp 0 ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {crab 3419  Vcvv 3463   βŠ† wss 3940   class class class wbr 5143  β—‘ccnv 5671   β€œ cima 5675  Fun wfun 6536  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7415   ∘f cof 7679   supp csupp 8161   ↑m cmap 8841  Fincfn 8960   finSupp cfsupp 9383  0cc0 11136  β„•cn 12240  β„•0cn0 12500  Basecbs 17177  0gc0g 17418  Mndcmnd 18691  .gcmg 19025  CMndccmn 19737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-seq 13997  df-0g 17420  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-mulg 19026  df-cmn 19739
This theorem is referenced by:  psrbagev2OLD  22029
  Copyright terms: Public domain W3C validator