Step | Hyp | Ref
| Expression |
1 | | psdadd.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | psdadd.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
3 | | eqid 2725 |
. . . . 5
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
4 | | psdadd.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
5 | | psdadd.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | | psdadd.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
7 | | psdadd.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
8 | 1, 2, 3, 4, 5, 6, 7 | psdval 22106 |
. . . 4
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
9 | | psdadd.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
10 | 1, 2, 3, 4, 5, 6, 9 | psdval 22106 |
. . . 4
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) = (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
11 | 8, 10 | oveq12d 7437 |
. . 3
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f
(+g‘𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f
(+g‘𝑅)(𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
12 | | ovex 7452 |
. . . . . 6
⊢ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V |
13 | | eqid 2725 |
. . . . . 6
⊢ (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
14 | 12, 13 | fnmpti 6699 |
. . . . 5
⊢ (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
15 | 14 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
16 | | ovex 7452 |
. . . . . 6
⊢ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V |
17 | | eqid 2725 |
. . . . . 6
⊢ (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
18 | 16, 17 | fnmpti 6699 |
. . . . 5
⊢ (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
19 | 18 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
20 | | ovex 7452 |
. . . . . 6
⊢
(ℕ0 ↑m 𝐼) ∈ V |
21 | 20 | rabex 5335 |
. . . . 5
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
22 | 21 | a1i 11 |
. . . 4
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
23 | | inidm 4217 |
. . . 4
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∩ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
24 | | fveq1 6895 |
. . . . . . 7
⊢ (𝑏 = 𝑑 → (𝑏‘𝑋) = (𝑑‘𝑋)) |
25 | 24 | oveq1d 7434 |
. . . . . 6
⊢ (𝑏 = 𝑑 → ((𝑏‘𝑋) + 1) = ((𝑑‘𝑋) + 1)) |
26 | | fvoveq1 7442 |
. . . . . 6
⊢ (𝑏 = 𝑑 → (𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
27 | 25, 26 | oveq12d 7437 |
. . . . 5
⊢ (𝑏 = 𝑑 → (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
28 | | simpr 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
29 | | ovexd 7454 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V) |
30 | 13, 27, 28, 29 | fvmptd3 7027 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
31 | | fvoveq1 7442 |
. . . . . 6
⊢ (𝑏 = 𝑑 → (𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
32 | 25, 31 | oveq12d 7437 |
. . . . 5
⊢ (𝑏 = 𝑑 → (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
33 | | ovexd 7454 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V) |
34 | 17, 32, 28, 33 | fvmptd3 7027 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
35 | 15, 19, 22, 22, 23, 30, 34 | offval 7694 |
. . 3
⊢ (𝜑 → ((𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f
(+g‘𝑅)(𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑏‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑏 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
((((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g‘𝑅)(((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
36 | | eqid 2725 |
. . . . . . . . . 10
⊢
(+g‘𝑅) = (+g‘𝑅) |
37 | | psdadd.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑆) |
38 | 1, 2, 36, 37, 7, 9 | psradd 21899 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 + 𝐺) = (𝐹 ∘f
(+g‘𝑅)𝐺)) |
39 | 38 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹 + 𝐺) = (𝐹 ∘f
(+g‘𝑅)𝐺)) |
40 | 39 | fveq1d 6898 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹 ∘f
(+g‘𝑅)𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
41 | 3 | psrbagsn 22029 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
42 | 4, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
43 | 42 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
44 | 3 | psrbagaddcl 21878 |
. . . . . . . . 9
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
45 | 28, 43, 44 | syl2anc 582 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
46 | | eqid 2725 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
47 | 1, 46, 3, 2, 7 | psrelbas 21896 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
48 | 47 | ffnd 6724 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
49 | 1, 46, 3, 2, 9 | psrelbas 21896 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
50 | 49 | ffnd 6724 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
51 | | eqidd 2726 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
52 | | eqidd 2726 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
53 | 48, 50, 22, 22, 23, 51, 52 | ofval 7696 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 ∘f
(+g‘𝑅)𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
54 | 45, 53 | syldan 589 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 ∘f
(+g‘𝑅)𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
55 | 40, 54 | eqtrd 2765 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
56 | 55 | oveq2d 7435 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 + 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
57 | 5 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd) |
58 | 3 | psrbagf 21868 |
. . . . . . . . 9
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0) |
59 | 58 | adantl 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
60 | 6 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
61 | 59, 60 | ffvelcdmd 7094 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈
ℕ0) |
62 | | peano2nn0 12545 |
. . . . . . 7
⊢ ((𝑑‘𝑋) ∈ ℕ0 → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
63 | 61, 62 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
64 | 7 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹 ∈ 𝐵) |
65 | 1, 46, 3, 2, 64 | psrelbas 21896 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
66 | 65, 45 | ffvelcdmd 7094 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅)) |
67 | 49 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
68 | 67, 45 | ffvelcdmd 7094 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅)) |
69 | | eqid 2725 |
. . . . . . 7
⊢
(.g‘𝑅) = (.g‘𝑅) |
70 | 46, 69, 36 | mulgnn0di 19792 |
. . . . . 6
⊢ ((𝑅 ∈ CMnd ∧ (((𝑑‘𝑋) + 1) ∈ ℕ0 ∧
(𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g‘𝑅)(((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
71 | 57, 63, 66, 68, 70 | syl13anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g‘𝑅)(((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
72 | 56, 71 | eqtr2d 2766 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g‘𝑅)(((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 + 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
73 | 72 | mpteq2dva 5249 |
. . 3
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦
((((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g‘𝑅)(((𝑑‘𝑋) + 1)(.g‘𝑅)(𝐺‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 + 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
74 | 11, 35, 73 | 3eqtrd 2769 |
. 2
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f
(+g‘𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 + 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
75 | 5 | cmnmndd 19771 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
76 | | mndmgm 18704 |
. . . . 5
⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) |
77 | 75, 76 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Mgm) |
78 | 1, 2, 4, 77, 6, 7 | psdcl 22108 |
. . 3
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |
79 | 1, 2, 4, 77, 6, 9 | psdcl 22108 |
. . 3
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵) |
80 | 1, 2, 36, 37, 78, 79 | psradd 21899 |
. 2
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f
(+g‘𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) |
81 | 1, 2, 37, 77, 7, 9 | psraddcl 21900 |
. . 3
⊢ (𝜑 → (𝐹 + 𝐺) ∈ 𝐵) |
82 | 1, 2, 3, 4, 5, 6, 81 | psdval 22106 |
. 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 + 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
83 | 74, 80, 82 | 3eqtr4rd 2776 |
1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) |