MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdadd Structured version   Visualization version   GIF version

Theorem psdadd 22190
Description: The derivative of a sum is the sum of the derivatives. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdadd.s 𝑆 = (𝐼 mPwSer 𝑅)
psdadd.b 𝐵 = (Base‘𝑆)
psdadd.p + = (+g𝑆)
psdadd.i (𝜑𝐼𝑉)
psdadd.r (𝜑𝑅 ∈ CMnd)
psdadd.x (𝜑𝑋𝐼)
psdadd.f (𝜑𝐹𝐵)
psdadd.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdadd (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))

Proof of Theorem psdadd
Dummy variables 𝑏 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdadd.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psdadd.b . . . . 5 𝐵 = (Base‘𝑆)
3 eqid 2740 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdadd.i . . . . 5 (𝜑𝐼𝑉)
5 psdadd.r . . . . 5 (𝜑𝑅 ∈ CMnd)
6 psdadd.x . . . . 5 (𝜑𝑋𝐼)
7 psdadd.f . . . . 5 (𝜑𝐹𝐵)
81, 2, 3, 4, 5, 6, 7psdval 22186 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
9 psdadd.g . . . . 5 (𝜑𝐺𝐵)
101, 2, 3, 4, 5, 6, 9psdval 22186 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
118, 10oveq12d 7466 . . 3 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
12 ovex 7481 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
13 eqid 2740 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1412, 13fnmpti 6723 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1514a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
16 ovex 7481 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
17 eqid 2740 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1816, 17fnmpti 6723 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1918a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
20 ovex 7481 . . . . . 6 (ℕ0m 𝐼) ∈ V
2120rabex 5357 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2221a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
23 inidm 4248 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
24 fveq1 6919 . . . . . . 7 (𝑏 = 𝑑 → (𝑏𝑋) = (𝑑𝑋))
2524oveq1d 7463 . . . . . 6 (𝑏 = 𝑑 → ((𝑏𝑋) + 1) = ((𝑑𝑋) + 1))
26 fvoveq1 7471 . . . . . 6 (𝑏 = 𝑑 → (𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
2725, 26oveq12d 7466 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
28 simpr 484 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
29 ovexd 7483 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
3013, 27, 28, 29fvmptd3 7052 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
31 fvoveq1 7471 . . . . . 6 (𝑏 = 𝑑 → (𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
3225, 31oveq12d 7466 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
33 ovexd 7483 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
3417, 32, 28, 33fvmptd3 7052 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
3515, 19, 22, 22, 23, 30, 34offval 7723 . . 3 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
36 eqid 2740 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
37 psdadd.p . . . . . . . . . 10 + = (+g𝑆)
381, 2, 36, 37, 7, 9psradd 21980 . . . . . . . . 9 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
3938adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
4039fveq1d 6922 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
413psrbagsn 22110 . . . . . . . . . . 11 (𝐼𝑉 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
424, 41syl 17 . . . . . . . . . 10 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4342adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
443psrbagaddcl 21967 . . . . . . . . 9 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4528, 43, 44syl2anc 583 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
46 eqid 2740 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
471, 46, 3, 2, 7psrelbas 21977 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4847ffnd 6748 . . . . . . . . 9 (𝜑𝐹 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
491, 46, 3, 2, 9psrelbas 21977 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5049ffnd 6748 . . . . . . . . 9 (𝜑𝐺 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
51 eqidd 2741 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
52 eqidd 2741 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
5348, 50, 22, 22, 23, 51, 52ofval 7725 . . . . . . . 8 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5445, 53syldan 590 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5540, 54eqtrd 2780 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5655oveq2d 7464 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
575adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
583psrbagf 21961 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
5958adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
606adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
6159, 60ffvelcdmd 7119 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
62 peano2nn0 12593 . . . . . . 7 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
6361, 62syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
647adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
651, 46, 3, 2, 64psrelbas 21977 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6665, 45ffvelcdmd 7119 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
6749adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6867, 45ffvelcdmd 7119 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
69 eqid 2740 . . . . . . 7 (.g𝑅) = (.g𝑅)
7046, 69, 36mulgnn0di 19867 . . . . . 6 ((𝑅 ∈ CMnd ∧ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7157, 63, 66, 68, 70syl13anc 1372 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7256, 71eqtr2d 2781 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
7372mpteq2dva 5266 . . 3 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7411, 35, 733eqtrd 2784 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
755cmnmndd 19846 . . . . 5 (𝜑𝑅 ∈ Mnd)
76 mndmgm 18779 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
7775, 76syl 17 . . . 4 (𝜑𝑅 ∈ Mgm)
781, 2, 4, 77, 6, 7psdcl 22188 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
791, 2, 4, 77, 6, 9psdcl 22188 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
801, 2, 36, 37, 78, 79psradd 21980 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
811, 2, 37, 77, 7, 9psraddcl 21981 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
821, 2, 3, 4, 5, 6, 81psdval 22186 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
8374, 80, 823eqtr4rd 2791 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  ifcif 4548  cmpt 5249  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Fincfn 9003  0cc0 11184  1c1 11185   + caddc 11187  cn 12293  0cn0 12553  Basecbs 17258  +gcplusg 17311  Mgmcmgm 18676  Mndcmnd 18772  .gcmg 19107  CMndccmn 19822   mPwSer cmps 21947   mPSDer cpsd 22157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-tset 17330  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mulg 19108  df-cmn 19824  df-psr 21952  df-psd 22183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator