MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdadd Structured version   Visualization version   GIF version

Theorem psdadd 22050
Description: The derivative of a sum is the sum of the derivatives. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdadd.s 𝑆 = (𝐼 mPwSer 𝑅)
psdadd.b 𝐵 = (Base‘𝑆)
psdadd.p + = (+g𝑆)
psdadd.r (𝜑𝑅 ∈ CMnd)
psdadd.x (𝜑𝑋𝐼)
psdadd.f (𝜑𝐹𝐵)
psdadd.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdadd (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))

Proof of Theorem psdadd
Dummy variables 𝑏 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdadd.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psdadd.b . . . . 5 𝐵 = (Base‘𝑆)
3 eqid 2729 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdadd.x . . . . 5 (𝜑𝑋𝐼)
5 psdadd.f . . . . 5 (𝜑𝐹𝐵)
61, 2, 3, 4, 5psdval 22046 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7 psdadd.g . . . . 5 (𝜑𝐺𝐵)
81, 2, 3, 4, 7psdval 22046 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
96, 8oveq12d 7405 . . 3 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
10 ovex 7420 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
11 eqid 2729 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1210, 11fnmpti 6661 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1312a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
14 ovex 7420 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
15 eqid 2729 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1614, 15fnmpti 6661 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1716a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
18 ovex 7420 . . . . . 6 (ℕ0m 𝐼) ∈ V
1918rabex 5294 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2019a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
21 inidm 4190 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
22 fveq1 6857 . . . . . . 7 (𝑏 = 𝑑 → (𝑏𝑋) = (𝑑𝑋))
2322oveq1d 7402 . . . . . 6 (𝑏 = 𝑑 → ((𝑏𝑋) + 1) = ((𝑑𝑋) + 1))
24 fvoveq1 7410 . . . . . 6 (𝑏 = 𝑑 → (𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
2523, 24oveq12d 7405 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
26 simpr 484 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
27 ovexd 7422 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
2811, 25, 26, 27fvmptd3 6991 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
29 fvoveq1 7410 . . . . . 6 (𝑏 = 𝑑 → (𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
3023, 29oveq12d 7405 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
31 ovexd 7422 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
3215, 30, 26, 31fvmptd3 6991 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
3313, 17, 20, 20, 21, 28, 32offval 7662 . . 3 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
34 eqid 2729 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
35 psdadd.p . . . . . . . . . 10 + = (+g𝑆)
361, 2, 34, 35, 5, 7psradd 21846 . . . . . . . . 9 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
3736adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
3837fveq1d 6860 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
39 reldmpsr 21823 . . . . . . . . . . . . 13 Rel dom mPwSer
401, 2, 39strov2rcl 17187 . . . . . . . . . . . 12 (𝐹𝐵𝐼 ∈ V)
415, 40syl 17 . . . . . . . . . . 11 (𝜑𝐼 ∈ V)
423psrbagsn 21970 . . . . . . . . . . 11 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4443adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
453psrbagaddcl 21833 . . . . . . . . 9 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4626, 44, 45syl2anc 584 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
47 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
481, 47, 3, 2, 5psrelbas 21843 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4948ffnd 6689 . . . . . . . . 9 (𝜑𝐹 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
501, 47, 3, 2, 7psrelbas 21843 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5150ffnd 6689 . . . . . . . . 9 (𝜑𝐺 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
52 eqidd 2730 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
53 eqidd 2730 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
5449, 51, 20, 20, 21, 52, 53ofval 7664 . . . . . . . 8 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5546, 54syldan 591 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5638, 55eqtrd 2764 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5756oveq2d 7403 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
58 psdadd.r . . . . . . 7 (𝜑𝑅 ∈ CMnd)
5958adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
603psrbagf 21827 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
6160adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
624adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
6361, 62ffvelcdmd 7057 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
64 peano2nn0 12482 . . . . . . 7 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
6563, 64syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
665adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
671, 47, 3, 2, 66psrelbas 21843 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6867, 46ffvelcdmd 7057 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
6950adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
7069, 46ffvelcdmd 7057 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
71 eqid 2729 . . . . . . 7 (.g𝑅) = (.g𝑅)
7247, 71, 34mulgnn0di 19755 . . . . . 6 ((𝑅 ∈ CMnd ∧ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7359, 65, 68, 70, 72syl13anc 1374 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7457, 73eqtr2d 2765 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
7574mpteq2dva 5200 . . 3 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
769, 33, 753eqtrd 2768 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7758cmnmndd 19734 . . . . 5 (𝜑𝑅 ∈ Mnd)
78 mndmgm 18668 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
7977, 78syl 17 . . . 4 (𝜑𝑅 ∈ Mgm)
801, 2, 79, 4, 5psdcl 22048 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
811, 2, 79, 4, 7psdcl 22048 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
821, 2, 34, 35, 80, 81psradd 21846 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
831, 2, 35, 79, 5, 7psraddcl 21847 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
841, 2, 3, 4, 83psdval 22046 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
8576, 82, 843eqtr4rd 2775 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  ifcif 4488  cmpt 5188  ccnv 5637  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220  Mgmcmgm 18565  Mndcmnd 18661  .gcmg 18999  CMndccmn 19710   mPwSer cmps 21813   mPSDer cpsd 22017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mulg 19000  df-cmn 19712  df-psr 21818  df-psd 22043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator