MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdadd Structured version   Visualization version   GIF version

Theorem psdadd 22079
Description: The derivative of a sum is the sum of the derivatives. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdadd.s 𝑆 = (𝐼 mPwSer 𝑅)
psdadd.b 𝐵 = (Base‘𝑆)
psdadd.p + = (+g𝑆)
psdadd.r (𝜑𝑅 ∈ CMnd)
psdadd.x (𝜑𝑋𝐼)
psdadd.f (𝜑𝐹𝐵)
psdadd.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdadd (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))

Proof of Theorem psdadd
Dummy variables 𝑏 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdadd.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psdadd.b . . . . 5 𝐵 = (Base‘𝑆)
3 eqid 2731 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdadd.x . . . . 5 (𝜑𝑋𝐼)
5 psdadd.f . . . . 5 (𝜑𝐹𝐵)
61, 2, 3, 4, 5psdval 22075 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7 psdadd.g . . . . 5 (𝜑𝐺𝐵)
81, 2, 3, 4, 7psdval 22075 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
96, 8oveq12d 7364 . . 3 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
10 ovex 7379 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
11 eqid 2731 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1210, 11fnmpti 6624 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1312a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
14 ovex 7379 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
15 eqid 2731 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1614, 15fnmpti 6624 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1716a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
18 ovex 7379 . . . . . 6 (ℕ0m 𝐼) ∈ V
1918rabex 5277 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2019a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
21 inidm 4177 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
22 fveq1 6821 . . . . . . 7 (𝑏 = 𝑑 → (𝑏𝑋) = (𝑑𝑋))
2322oveq1d 7361 . . . . . 6 (𝑏 = 𝑑 → ((𝑏𝑋) + 1) = ((𝑑𝑋) + 1))
24 fvoveq1 7369 . . . . . 6 (𝑏 = 𝑑 → (𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
2523, 24oveq12d 7364 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
26 simpr 484 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
27 ovexd 7381 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
2811, 25, 26, 27fvmptd3 6952 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
29 fvoveq1 7369 . . . . . 6 (𝑏 = 𝑑 → (𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
3023, 29oveq12d 7364 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
31 ovexd 7381 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
3215, 30, 26, 31fvmptd3 6952 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
3313, 17, 20, 20, 21, 28, 32offval 7619 . . 3 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
34 eqid 2731 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
35 psdadd.p . . . . . . . . . 10 + = (+g𝑆)
361, 2, 34, 35, 5, 7psradd 21875 . . . . . . . . 9 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
3736adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
3837fveq1d 6824 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
39 reldmpsr 21852 . . . . . . . . . . . . 13 Rel dom mPwSer
401, 2, 39strov2rcl 17128 . . . . . . . . . . . 12 (𝐹𝐵𝐼 ∈ V)
415, 40syl 17 . . . . . . . . . . 11 (𝜑𝐼 ∈ V)
423psrbagsn 21999 . . . . . . . . . . 11 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4443adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
453psrbagaddcl 21862 . . . . . . . . 9 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4626, 44, 45syl2anc 584 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
47 eqid 2731 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
481, 47, 3, 2, 5psrelbas 21872 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4948ffnd 6652 . . . . . . . . 9 (𝜑𝐹 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
501, 47, 3, 2, 7psrelbas 21872 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5150ffnd 6652 . . . . . . . . 9 (𝜑𝐺 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
52 eqidd 2732 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
53 eqidd 2732 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
5449, 51, 20, 20, 21, 52, 53ofval 7621 . . . . . . . 8 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5546, 54syldan 591 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5638, 55eqtrd 2766 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5756oveq2d 7362 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
58 psdadd.r . . . . . . 7 (𝜑𝑅 ∈ CMnd)
5958adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
603psrbagf 21856 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
6160adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
624adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
6361, 62ffvelcdmd 7018 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
64 peano2nn0 12421 . . . . . . 7 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
6563, 64syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
665adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
671, 47, 3, 2, 66psrelbas 21872 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6867, 46ffvelcdmd 7018 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
6950adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
7069, 46ffvelcdmd 7018 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
71 eqid 2731 . . . . . . 7 (.g𝑅) = (.g𝑅)
7247, 71, 34mulgnn0di 19738 . . . . . 6 ((𝑅 ∈ CMnd ∧ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7359, 65, 68, 70, 72syl13anc 1374 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7457, 73eqtr2d 2767 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
7574mpteq2dva 5184 . . 3 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
769, 33, 753eqtrd 2770 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7758cmnmndd 19717 . . . . 5 (𝜑𝑅 ∈ Mnd)
78 mndmgm 18649 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
7977, 78syl 17 . . . 4 (𝜑𝑅 ∈ Mgm)
801, 2, 79, 4, 5psdcl 22077 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
811, 2, 79, 4, 7psdcl 22077 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
821, 2, 34, 35, 80, 81psradd 21875 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
831, 2, 35, 79, 5, 7psraddcl 21876 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
841, 2, 3, 4, 83psdval 22075 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
8576, 82, 843eqtr4rd 2777 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  ifcif 4475  cmpt 5172  ccnv 5615  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  Fincfn 8869  0cc0 11006  1c1 11007   + caddc 11009  cn 12125  0cn0 12381  Basecbs 17120  +gcplusg 17161  Mgmcmgm 18546  Mndcmnd 18642  .gcmg 18980  CMndccmn 19693   mPwSer cmps 21842   mPSDer cpsd 22046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mulg 18981  df-cmn 19695  df-psr 21847  df-psd 22072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator