MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdadd Structured version   Visualization version   GIF version

Theorem psdadd 22185
Description: The derivative of a sum is the sum of the derivatives. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdadd.s 𝑆 = (𝐼 mPwSer 𝑅)
psdadd.b 𝐵 = (Base‘𝑆)
psdadd.p + = (+g𝑆)
psdadd.r (𝜑𝑅 ∈ CMnd)
psdadd.x (𝜑𝑋𝐼)
psdadd.f (𝜑𝐹𝐵)
psdadd.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdadd (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))

Proof of Theorem psdadd
Dummy variables 𝑏 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdadd.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psdadd.b . . . . 5 𝐵 = (Base‘𝑆)
3 eqid 2735 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdadd.x . . . . 5 (𝜑𝑋𝐼)
5 psdadd.f . . . . 5 (𝜑𝐹𝐵)
61, 2, 3, 4, 5psdval 22181 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7 psdadd.g . . . . 5 (𝜑𝐺𝐵)
81, 2, 3, 4, 7psdval 22181 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
96, 8oveq12d 7449 . . 3 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
10 ovex 7464 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
11 eqid 2735 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1210, 11fnmpti 6712 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1312a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
14 ovex 7464 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
15 eqid 2735 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1614, 15fnmpti 6712 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1716a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
18 ovex 7464 . . . . . 6 (ℕ0m 𝐼) ∈ V
1918rabex 5345 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2019a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
21 inidm 4235 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
22 fveq1 6906 . . . . . . 7 (𝑏 = 𝑑 → (𝑏𝑋) = (𝑑𝑋))
2322oveq1d 7446 . . . . . 6 (𝑏 = 𝑑 → ((𝑏𝑋) + 1) = ((𝑑𝑋) + 1))
24 fvoveq1 7454 . . . . . 6 (𝑏 = 𝑑 → (𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
2523, 24oveq12d 7449 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
26 simpr 484 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
27 ovexd 7466 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
2811, 25, 26, 27fvmptd3 7039 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
29 fvoveq1 7454 . . . . . 6 (𝑏 = 𝑑 → (𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
3023, 29oveq12d 7449 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
31 ovexd 7466 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
3215, 30, 26, 31fvmptd3 7039 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
3313, 17, 20, 20, 21, 28, 32offval 7706 . . 3 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
34 eqid 2735 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
35 psdadd.p . . . . . . . . . 10 + = (+g𝑆)
361, 2, 34, 35, 5, 7psradd 21975 . . . . . . . . 9 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
3736adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
3837fveq1d 6909 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
39 reldmpsr 21952 . . . . . . . . . . . . 13 Rel dom mPwSer
401, 2, 39strov2rcl 17253 . . . . . . . . . . . 12 (𝐹𝐵𝐼 ∈ V)
415, 40syl 17 . . . . . . . . . . 11 (𝜑𝐼 ∈ V)
423psrbagsn 22105 . . . . . . . . . . 11 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4443adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
453psrbagaddcl 21962 . . . . . . . . 9 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4626, 44, 45syl2anc 584 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
47 eqid 2735 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
481, 47, 3, 2, 5psrelbas 21972 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4948ffnd 6738 . . . . . . . . 9 (𝜑𝐹 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
501, 47, 3, 2, 7psrelbas 21972 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5150ffnd 6738 . . . . . . . . 9 (𝜑𝐺 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
52 eqidd 2736 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
53 eqidd 2736 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
5449, 51, 20, 20, 21, 52, 53ofval 7708 . . . . . . . 8 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5546, 54syldan 591 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5638, 55eqtrd 2775 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5756oveq2d 7447 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
58 psdadd.r . . . . . . 7 (𝜑𝑅 ∈ CMnd)
5958adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
603psrbagf 21956 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
6160adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
624adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
6361, 62ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
64 peano2nn0 12564 . . . . . . 7 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
6563, 64syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
665adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
671, 47, 3, 2, 66psrelbas 21972 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6867, 46ffvelcdmd 7105 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
6950adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
7069, 46ffvelcdmd 7105 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
71 eqid 2735 . . . . . . 7 (.g𝑅) = (.g𝑅)
7247, 71, 34mulgnn0di 19858 . . . . . 6 ((𝑅 ∈ CMnd ∧ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7359, 65, 68, 70, 72syl13anc 1371 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7457, 73eqtr2d 2776 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
7574mpteq2dva 5248 . . 3 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
769, 33, 753eqtrd 2779 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7758cmnmndd 19837 . . . . 5 (𝜑𝑅 ∈ Mnd)
78 mndmgm 18767 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
7977, 78syl 17 . . . 4 (𝜑𝑅 ∈ Mgm)
801, 2, 79, 4, 5psdcl 22183 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
811, 2, 79, 4, 7psdcl 22183 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
821, 2, 34, 35, 80, 81psradd 21975 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
831, 2, 35, 79, 5, 7psraddcl 21976 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
841, 2, 3, 4, 83psdval 22181 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
8576, 82, 843eqtr4rd 2786 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  ifcif 4531  cmpt 5231  ccnv 5688  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  Fincfn 8984  0cc0 11153  1c1 11154   + caddc 11156  cn 12264  0cn0 12524  Basecbs 17245  +gcplusg 17298  Mgmcmgm 18664  Mndcmnd 18760  .gcmg 19098  CMndccmn 19813   mPwSer cmps 21942   mPSDer cpsd 22152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mulg 19099  df-cmn 19815  df-psr 21947  df-psd 22178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator