MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdadd Structured version   Visualization version   GIF version

Theorem psdadd 22167
Description: The derivative of a sum is the sum of the derivatives. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdadd.s 𝑆 = (𝐼 mPwSer 𝑅)
psdadd.b 𝐵 = (Base‘𝑆)
psdadd.p + = (+g𝑆)
psdadd.r (𝜑𝑅 ∈ CMnd)
psdadd.x (𝜑𝑋𝐼)
psdadd.f (𝜑𝐹𝐵)
psdadd.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdadd (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))

Proof of Theorem psdadd
Dummy variables 𝑏 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdadd.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psdadd.b . . . . 5 𝐵 = (Base‘𝑆)
3 eqid 2737 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdadd.x . . . . 5 (𝜑𝑋𝐼)
5 psdadd.f . . . . 5 (𝜑𝐹𝐵)
61, 2, 3, 4, 5psdval 22163 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7 psdadd.g . . . . 5 (𝜑𝐺𝐵)
81, 2, 3, 4, 7psdval 22163 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
96, 8oveq12d 7449 . . 3 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
10 ovex 7464 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
11 eqid 2737 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1210, 11fnmpti 6711 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1312a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
14 ovex 7464 . . . . . 6 (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V
15 eqid 2737 . . . . . 6 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1614, 15fnmpti 6711 . . . . 5 (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1716a1i 11 . . . 4 (𝜑 → (𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
18 ovex 7464 . . . . . 6 (ℕ0m 𝐼) ∈ V
1918rabex 5339 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2019a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
21 inidm 4227 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
22 fveq1 6905 . . . . . . 7 (𝑏 = 𝑑 → (𝑏𝑋) = (𝑑𝑋))
2322oveq1d 7446 . . . . . 6 (𝑏 = 𝑑 → ((𝑏𝑋) + 1) = ((𝑑𝑋) + 1))
24 fvoveq1 7454 . . . . . 6 (𝑏 = 𝑑 → (𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
2523, 24oveq12d 7449 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
26 simpr 484 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
27 ovexd 7466 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
2811, 25, 26, 27fvmptd3 7039 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
29 fvoveq1 7454 . . . . . 6 (𝑏 = 𝑑 → (𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
3023, 29oveq12d 7449 . . . . 5 (𝑏 = 𝑑 → (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
31 ovexd 7466 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) ∈ V)
3215, 30, 26, 31fvmptd3 7039 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
3313, 17, 20, 20, 21, 28, 32offval 7706 . . 3 (𝜑 → ((𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐹‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) ∘f (+g𝑅)(𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑏𝑋) + 1)(.g𝑅)(𝐺‘(𝑏f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
34 eqid 2737 . . . . . . . . . 10 (+g𝑅) = (+g𝑅)
35 psdadd.p . . . . . . . . . 10 + = (+g𝑆)
361, 2, 34, 35, 5, 7psradd 21957 . . . . . . . . 9 (𝜑 → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
3736adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹 + 𝐺) = (𝐹f (+g𝑅)𝐺))
3837fveq1d 6908 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
39 reldmpsr 21934 . . . . . . . . . . . . 13 Rel dom mPwSer
401, 2, 39strov2rcl 17255 . . . . . . . . . . . 12 (𝐹𝐵𝐼 ∈ V)
415, 40syl 17 . . . . . . . . . . 11 (𝜑𝐼 ∈ V)
423psrbagsn 22087 . . . . . . . . . . 11 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4443adantr 480 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
453psrbagaddcl 21944 . . . . . . . . 9 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4626, 44, 45syl2anc 584 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
47 eqid 2737 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
481, 47, 3, 2, 5psrelbas 21954 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4948ffnd 6737 . . . . . . . . 9 (𝜑𝐹 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
501, 47, 3, 2, 7psrelbas 21954 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
5150ffnd 6737 . . . . . . . . 9 (𝜑𝐺 Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
52 eqidd 2738 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
53 eqidd 2738 . . . . . . . . 9 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
5449, 51, 20, 20, 21, 52, 53ofval 7708 . . . . . . . 8 ((𝜑 ∧ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5546, 54syldan 591 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹f (+g𝑅)𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5638, 55eqtrd 2777 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5756oveq2d 7447 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
58 psdadd.r . . . . . . 7 (𝜑𝑅 ∈ CMnd)
5958adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
603psrbagf 21938 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
6160adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
624adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
6361, 62ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
64 peano2nn0 12566 . . . . . . 7 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
6563, 64syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
665adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
671, 47, 3, 2, 66psrelbas 21954 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
6867, 46ffvelcdmd 7105 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
6950adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
7069, 46ffvelcdmd 7105 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))
71 eqid 2737 . . . . . . 7 (.g𝑅) = (.g𝑅)
7247, 71, 34mulgnn0di 19843 . . . . . 6 ((𝑅 ∈ CMnd ∧ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅) ∧ (𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ (Base‘𝑅))) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7359, 65, 68, 70, 72syl13anc 1374 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(+g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7457, 73eqtr2d 2778 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
7574mpteq2dva 5242 . . 3 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ ((((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))(+g𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐺‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
769, 33, 753eqtrd 2781 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
7758cmnmndd 19822 . . . . 5 (𝜑𝑅 ∈ Mnd)
78 mndmgm 18754 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
7977, 78syl 17 . . . 4 (𝜑𝑅 ∈ Mgm)
801, 2, 79, 4, 5psdcl 22165 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
811, 2, 79, 4, 7psdcl 22165 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
821, 2, 34, 35, 80, 81psradd 21957 . 2 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∘f (+g𝑅)(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
831, 2, 35, 79, 5, 7psraddcl 21958 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
841, 2, 3, 4, 83psdval 22163 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 + 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
8576, 82, 843eqtr4rd 2788 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  ifcif 4525  cmpt 5225  ccnv 5684  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  m cmap 8866  Fincfn 8985  0cc0 11155  1c1 11156   + caddc 11158  cn 12266  0cn0 12526  Basecbs 17247  +gcplusg 17297  Mgmcmgm 18651  Mndcmnd 18747  .gcmg 19085  CMndccmn 19798   mPwSer cmps 21924   mPSDer cpsd 22134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mulg 19086  df-cmn 19800  df-psr 21929  df-psd 22160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator