MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1fpws Structured version   Visualization version   GIF version

Theorem evls1fpws 22289
Description: Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1fpws.s (𝜑𝑆 ∈ CRing)
evls1fpws.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1fpws.y (𝜑𝑀𝐵)
evls1fpws.1 · = (.r𝑆)
evls1fpws.2 = (.g‘(mulGrp‘𝑆))
evls1fpws.a 𝐴 = (coe1𝑀)
Assertion
Ref Expression
evls1fpws (𝜑 → (𝑄𝑀) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
Distinct variable groups:   · ,𝑘,𝑥   𝐴,𝑘,𝑥   𝐵,𝑘   𝑘,𝐾,𝑥   𝑘,𝑀   𝑄,𝑘,𝑥   𝑆,𝑘,𝑥   𝑈,𝑘,𝑥   𝑘,𝑊,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥,𝑘)   (𝑥,𝑘)   𝑀(𝑥)

Proof of Theorem evls1fpws
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fpws.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
2 ressply1evl2.u . . . . . 6 𝑈 = (𝑆s 𝑅)
32subrgring 20494 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑈 ∈ Ring)
5 evls1fpws.y . . . 4 (𝜑𝑀𝐵)
6 ressply1evl2.w . . . . 5 𝑊 = (Poly1𝑈)
7 eqid 2729 . . . . 5 (var1𝑈) = (var1𝑈)
8 ressply1evl2.b . . . . 5 𝐵 = (Base‘𝑊)
9 eqid 2729 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 eqid 2729 . . . . 5 (mulGrp‘𝑊) = (mulGrp‘𝑊)
11 eqid 2729 . . . . 5 (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝑊))
12 evls1fpws.a . . . . 5 𝐴 = (coe1𝑀)
136, 7, 8, 9, 10, 11, 12ply1coe 22218 . . . 4 ((𝑈 ∈ Ring ∧ 𝑀𝐵) → 𝑀 = (𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))))
144, 5, 13syl2anc 584 . . 3 (𝜑𝑀 = (𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))))
1514fveq2d 6844 . 2 (𝜑 → (𝑄𝑀) = (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))))
16 ressply1evl2.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
17 ressply1evl2.k . . . 4 𝐾 = (Base‘𝑆)
18 eqid 2729 . . . 4 (0g𝑊) = (0g𝑊)
19 eqid 2729 . . . 4 (𝑆s 𝐾) = (𝑆s 𝐾)
20 evls1fpws.s . . . 4 (𝜑𝑆 ∈ CRing)
216ply1lmod 22169 . . . . . . 7 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
224, 21syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
2322adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ LMod)
24 eqid 2729 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
2512, 8, 6, 24coe1fvalcl 22130 . . . . . . 7 ((𝑀𝐵𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑈))
265, 25sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑈))
276ply1sca 22170 . . . . . . . . 9 (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊))
284, 27syl 17 . . . . . . . 8 (𝜑𝑈 = (Scalar‘𝑊))
2928fveq2d 6844 . . . . . . 7 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3029adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3126, 30eleqtrd 2830 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)))
3210, 8mgpbas 20065 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑊))
336ply1ring 22165 . . . . . . . . 9 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
344, 33syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Ring)
3534adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ Ring)
3610ringmgp 20159 . . . . . . 7 (𝑊 ∈ Ring → (mulGrp‘𝑊) ∈ Mnd)
3735, 36syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑊) ∈ Mnd)
38 simpr 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
394adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑈 ∈ Ring)
407, 6, 8vr1cl 22135 . . . . . . 7 (𝑈 ∈ Ring → (var1𝑈) ∈ 𝐵)
4139, 40syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (var1𝑈) ∈ 𝐵)
4232, 11, 37, 38, 41mulgnn0cld 19009 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
43 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
44 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
458, 43, 9, 44lmodvscl 20816 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ 𝐵)
4623, 31, 42, 45syl3anc 1373 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ 𝐵)
47 ssidd 3967 . . . 4 (𝜑 → ℕ0 ⊆ ℕ0)
48 fvexd 6855 . . . . 5 (𝜑 → (0g𝑊) ∈ V)
49 fveq2 6840 . . . . . 6 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
50 oveq1 7376 . . . . . 6 (𝑘 = 𝑗 → (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) = (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)))
5149, 50oveq12d 7387 . . . . 5 (𝑘 = 𝑗 → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))))
52 eqid 2729 . . . . . . . 8 (0g𝑈) = (0g𝑈)
5312, 8, 6, 52coe1ae0 22134 . . . . . . 7 (𝑀𝐵 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)))
545, 53syl 17 . . . . . 6 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)))
55 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝐴𝑗) = (0g𝑈))
5628ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → 𝑈 = (Scalar‘𝑊))
5756fveq2d 6844 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (0g𝑈) = (0g‘(Scalar‘𝑊)))
5855, 57eqtrd 2764 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝐴𝑗) = (0g‘(Scalar‘𝑊)))
5958oveq1d 7384 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))))
6022ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → 𝑊 ∈ LMod)
6134, 36syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑊) ∈ Mnd)
6261adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (mulGrp‘𝑊) ∈ Mnd)
63 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
644, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (var1𝑈) ∈ 𝐵)
6564adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (var1𝑈) ∈ 𝐵)
6632, 11, 62, 63, 65mulgnn0cld 19009 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
6766ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
68 eqid 2729 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
698, 43, 9, 68, 18lmod0vs 20833 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7060, 67, 69syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7159, 70eqtrd 2764 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7271ex 412 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝐴𝑗) = (0g𝑈) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊)))
7372imim2d 57 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7473ralimdva 3145 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → ∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7574reximdva 3146 . . . . . 6 (𝜑 → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7654, 75mpd 15 . . . . 5 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊)))
7748, 46, 51, 76mptnn0fsuppd 13939 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) finSupp (0g𝑊))
7816, 17, 6, 18, 2, 19, 8, 20, 1, 46, 47, 77evls1gsumadd 22244 . . 3 (𝜑 → (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))))
7916, 17, 19, 2, 6evls1rhm 22242 . . . . . . . . 9 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
8020, 1, 79syl2anc 584 . . . . . . . 8 (𝜑𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
8180adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
82 eqid 2729 . . . . . . . . . 10 (algSc‘𝑊) = (algSc‘𝑊)
8382, 43, 34, 22, 44, 8asclf 21824 . . . . . . . . 9 (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶𝐵)
8483adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶𝐵)
8584, 31ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((algSc‘𝑊)‘(𝐴𝑘)) ∈ 𝐵)
86 eqid 2729 . . . . . . . 8 (.r𝑊) = (.r𝑊)
87 eqid 2729 . . . . . . . 8 (.r‘(𝑆s 𝐾)) = (.r‘(𝑆s 𝐾))
888, 86, 87rhmmul 20406 . . . . . . 7 ((𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) ∧ ((algSc‘𝑊)‘(𝐴𝑘)) ∈ 𝐵 ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
8981, 85, 42, 88syl3anc 1373 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
902subrgcrng 20495 . . . . . . . . . . 11 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
9120, 1, 90syl2anc 584 . . . . . . . . . 10 (𝜑𝑈 ∈ CRing)
926ply1assa 22117 . . . . . . . . . 10 (𝑈 ∈ CRing → 𝑊 ∈ AssAlg)
9391, 92syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ AssAlg)
9493adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ AssAlg)
9582, 43, 44, 8, 86, 9asclmul1 21828 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → (((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))
9694, 31, 42, 95syl3anc 1373 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))
9796fveq2d 6844 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
98 eqid 2729 . . . . . . . 8 (Base‘(𝑆s 𝐾)) = (Base‘(𝑆s 𝐾))
9920adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑆 ∈ CRing)
10017fvexi 6854 . . . . . . . . 9 𝐾 ∈ V
101100a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐾 ∈ V)
1028, 98rhmf 20405 . . . . . . . . . 10 (𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
10381, 102syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
104103, 85ffvelcdmd 7039 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∈ (Base‘(𝑆s 𝐾)))
105103, 42ffvelcdmd 7039 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ (Base‘(𝑆s 𝐾)))
106 evls1fpws.1 . . . . . . . 8 · = (.r𝑆)
10719, 98, 99, 101, 104, 105, 106, 87pwsmulrval 17430 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∘f · (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
10819, 17, 98, 99, 101, 104pwselbas 17428 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))):𝐾𝐾)
109108ffnd 6671 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) Fn 𝐾)
11019, 17, 98, 99, 101, 105pwselbas 17428 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))):𝐾𝐾)
111110ffnd 6671 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) Fn 𝐾)
112 inidm 4186 . . . . . . . 8 (𝐾𝐾) = 𝐾
11320ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑆 ∈ CRing)
1141ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑅 ∈ (SubRing‘𝑆))
11517subrgss 20492 . . . . . . . . . . . . . 14 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
1161, 115syl 17 . . . . . . . . . . . . 13 (𝜑𝑅𝐾)
1172, 17ressbas2 17184 . . . . . . . . . . . . 13 (𝑅𝐾𝑅 = (Base‘𝑈))
118116, 117syl 17 . . . . . . . . . . . 12 (𝜑𝑅 = (Base‘𝑈))
119118adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑅 = (Base‘𝑈))
12026, 119eleqtrrd 2831 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ 𝑅)
121120adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝐴𝑘) ∈ 𝑅)
122 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑥𝐾)
12316, 6, 2, 17, 82, 113, 114, 121, 122evls1scafv 22286 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))‘𝑥) = (𝐴𝑘))
124 evls1fpws.2 . . . . . . . . 9 = (.g‘(mulGrp‘𝑆))
125 simplr 768 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑘 ∈ ℕ0)
12616, 2, 6, 7, 17, 11, 124, 113, 114, 125, 122evls1varpwval 22288 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))‘𝑥) = (𝑘 𝑥))
127109, 111, 101, 101, 112, 123, 126offval 7642 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∘f · (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
128107, 127eqtrd 2764 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
12989, 97, 1283eqtr3d 2772 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
130129mpteq2dva 5195 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))) = (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))))
131130oveq2d 7385 . . 3 (𝜑 → ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
132 eqid 2729 . . . 4 (0g‘(𝑆s 𝐾)) = (0g‘(𝑆s 𝐾))
133100a1i 11 . . . 4 (𝜑𝐾 ∈ V)
134 nn0ex 12424 . . . . 5 0 ∈ V
135134a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
13620crngringd 20166 . . . . 5 (𝜑𝑆 ∈ Ring)
137136ringcmnd 20204 . . . 4 (𝜑𝑆 ∈ CMnd)
138136ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑆 ∈ Ring)
1391adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ (SubRing‘𝑆))
140139, 115syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝑅𝐾)
141140, 120sseldd 3944 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ 𝐾)
142141adantr 480 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝐴𝑘) ∈ 𝐾)
143 eqid 2729 . . . . . . . . . 10 (mulGrp‘𝑆) = (mulGrp‘𝑆)
144143, 17mgpbas 20065 . . . . . . . . 9 𝐾 = (Base‘(mulGrp‘𝑆))
145143ringmgp 20159 . . . . . . . . . . 11 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
146136, 145syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
147146ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (mulGrp‘𝑆) ∈ Mnd)
148144, 124, 147, 125, 122mulgnn0cld 19009 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝑘 𝑥) ∈ 𝐾)
14917, 106, 138, 142, 148ringcld 20180 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1501493impa 1109 . . . . . 6 ((𝜑𝑘 ∈ ℕ0𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1511503com23 1126 . . . . 5 ((𝜑𝑥𝐾𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1521513expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑘 ∈ ℕ0)) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
153135mptexd 7180 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∈ V)
154 funmpt 6538 . . . . . 6 Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
155154a1i 11 . . . . 5 (𝜑 → Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))))
156 fvexd 6855 . . . . 5 (𝜑 → (0g‘(𝑆s 𝐾)) ∈ V)
15712, 8, 6, 52coe1sfi 22131 . . . . . . 7 (𝑀𝐵𝐴 finSupp (0g𝑈))
1585, 157syl 17 . . . . . 6 (𝜑𝐴 finSupp (0g𝑈))
159158fsuppimpd 9296 . . . . 5 (𝜑 → (𝐴 supp (0g𝑈)) ∈ Fin)
16012, 8, 6, 24coe1f 22129 . . . . . . . . . . . . . . . . 17 (𝑀𝐵𝐴:ℕ0⟶(Base‘𝑈))
1615, 160syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴:ℕ0⟶(Base‘𝑈))
162161ffnd 6671 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn ℕ0)
163162adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → 𝐴 Fn ℕ0)
164134a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → ℕ0 ∈ V)
165 fvexd 6855 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (0g𝑈) ∈ V)
166 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → 𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈))))
167163, 164, 165, 166fvdifsupp 8127 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐴𝑘) = (0g𝑈))
168 eqid 2729 . . . . . . . . . . . . . . . 16 (0g𝑆) = (0g𝑆)
1692, 168subrg0 20499 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝑆) → (0g𝑆) = (0g𝑈))
1701, 169syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑆) = (0g𝑈))
171170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (0g𝑆) = (0g𝑈))
172167, 171eqtr4d 2767 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐴𝑘) = (0g𝑆))
173172adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (𝐴𝑘) = (0g𝑆))
174173oveq1d 7384 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) = ((0g𝑆) · (𝑘 𝑥)))
175136ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑆 ∈ Ring)
176175, 145syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (mulGrp‘𝑆) ∈ Mnd)
177 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈))))
178177eldifad 3923 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑘 ∈ ℕ0)
179 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑥𝐾)
180144, 124, 176, 178, 179mulgnn0cld 19009 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (𝑘 𝑥) ∈ 𝐾)
18117, 106, 168ringlz 20213 . . . . . . . . . . 11 ((𝑆 ∈ Ring ∧ (𝑘 𝑥) ∈ 𝐾) → ((0g𝑆) · (𝑘 𝑥)) = (0g𝑆))
182175, 180, 181syl2anc 584 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((0g𝑆) · (𝑘 𝑥)) = (0g𝑆))
183174, 182eqtrd 2764 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) = (0g𝑆))
184183mpteq2dva 5195 . . . . . . . 8 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (𝑥𝐾 ↦ (0g𝑆)))
185 fconstmpt 5693 . . . . . . . 8 (𝐾 × {(0g𝑆)}) = (𝑥𝐾 ↦ (0g𝑆))
186184, 185eqtr4di 2782 . . . . . . 7 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (𝐾 × {(0g𝑆)}))
187137cmnmndd 19718 . . . . . . . . 9 (𝜑𝑆 ∈ Mnd)
18819, 168pws0g 18682 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐾 ∈ V) → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
189187, 133, 188syl2anc 584 . . . . . . . 8 (𝜑 → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
190189adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
191186, 190eqtrd 2764 . . . . . 6 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (0g‘(𝑆s 𝐾)))
192191, 135suppss2 8156 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) supp (0g‘(𝑆s 𝐾))) ⊆ (𝐴 supp (0g𝑈)))
193 suppssfifsupp 9307 . . . . 5 ((((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∧ (0g‘(𝑆s 𝐾)) ∈ V) ∧ ((𝐴 supp (0g𝑈)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) supp (0g‘(𝑆s 𝐾))) ⊆ (𝐴 supp (0g𝑈)))) → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) finSupp (0g‘(𝑆s 𝐾)))
194153, 155, 156, 159, 192, 193syl32anc 1380 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) finSupp (0g‘(𝑆s 𝐾)))
19519, 17, 132, 133, 135, 137, 152, 194pwsgsum 19896 . . 3 (𝜑 → ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
19678, 131, 1953eqtrd 2768 . 2 (𝜑 → (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
19715, 196eqtrd 2764 1 (𝜑 → (𝑄𝑀) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631   supp csupp 8116  Fincfn 8895   finSupp cfsupp 9288   < clt 11184  0cn0 12418  Basecbs 17155  s cress 17176  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  s cpws 17385  Mndcmnd 18643  .gcmg 18981  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154   RingHom crh 20389  SubRingcsubrg 20489  LModclmod 20798  AssAlgcasa 21792  algSccascl 21794  var1cv1 22093  Poly1cpl1 22094  coe1cco1 22095   evalSub1 ces1 22233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-lsp 20910  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-evls1 22235  df-evl1 22236
This theorem is referenced by:  ressply1evl  22290  evl1fpws  33526  ressply1evls1  33527  evls1fldgencl  33658
  Copyright terms: Public domain W3C validator