MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1fpws Structured version   Visualization version   GIF version

Theorem evls1fpws 22389
Description: Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1fpws.s (𝜑𝑆 ∈ CRing)
evls1fpws.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1fpws.y (𝜑𝑀𝐵)
evls1fpws.1 · = (.r𝑆)
evls1fpws.2 = (.g‘(mulGrp‘𝑆))
evls1fpws.a 𝐴 = (coe1𝑀)
Assertion
Ref Expression
evls1fpws (𝜑 → (𝑄𝑀) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
Distinct variable groups:   · ,𝑘,𝑥   𝐴,𝑘,𝑥   𝐵,𝑘   𝑘,𝐾,𝑥   𝑘,𝑀   𝑄,𝑘,𝑥   𝑆,𝑘,𝑥   𝑈,𝑘,𝑥   𝑘,𝑊,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥,𝑘)   (𝑥,𝑘)   𝑀(𝑥)

Proof of Theorem evls1fpws
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fpws.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
2 ressply1evl2.u . . . . . 6 𝑈 = (𝑆s 𝑅)
32subrgring 20591 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑈 ∈ Ring)
5 evls1fpws.y . . . 4 (𝜑𝑀𝐵)
6 ressply1evl2.w . . . . 5 𝑊 = (Poly1𝑈)
7 eqid 2735 . . . . 5 (var1𝑈) = (var1𝑈)
8 ressply1evl2.b . . . . 5 𝐵 = (Base‘𝑊)
9 eqid 2735 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 eqid 2735 . . . . 5 (mulGrp‘𝑊) = (mulGrp‘𝑊)
11 eqid 2735 . . . . 5 (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝑊))
12 evls1fpws.a . . . . 5 𝐴 = (coe1𝑀)
136, 7, 8, 9, 10, 11, 12ply1coe 22318 . . . 4 ((𝑈 ∈ Ring ∧ 𝑀𝐵) → 𝑀 = (𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))))
144, 5, 13syl2anc 584 . . 3 (𝜑𝑀 = (𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))))
1514fveq2d 6911 . 2 (𝜑 → (𝑄𝑀) = (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))))
16 ressply1evl2.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
17 ressply1evl2.k . . . 4 𝐾 = (Base‘𝑆)
18 eqid 2735 . . . 4 (0g𝑊) = (0g𝑊)
19 eqid 2735 . . . 4 (𝑆s 𝐾) = (𝑆s 𝐾)
20 evls1fpws.s . . . 4 (𝜑𝑆 ∈ CRing)
216ply1lmod 22269 . . . . . . 7 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
224, 21syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
2322adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ LMod)
24 eqid 2735 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
2512, 8, 6, 24coe1fvalcl 22230 . . . . . . 7 ((𝑀𝐵𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑈))
265, 25sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑈))
276ply1sca 22270 . . . . . . . . 9 (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊))
284, 27syl 17 . . . . . . . 8 (𝜑𝑈 = (Scalar‘𝑊))
2928fveq2d 6911 . . . . . . 7 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3029adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3126, 30eleqtrd 2841 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)))
3210, 8mgpbas 20158 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑊))
336ply1ring 22265 . . . . . . . . 9 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
344, 33syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Ring)
3534adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ Ring)
3610ringmgp 20257 . . . . . . 7 (𝑊 ∈ Ring → (mulGrp‘𝑊) ∈ Mnd)
3735, 36syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑊) ∈ Mnd)
38 simpr 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
394adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑈 ∈ Ring)
407, 6, 8vr1cl 22235 . . . . . . 7 (𝑈 ∈ Ring → (var1𝑈) ∈ 𝐵)
4139, 40syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (var1𝑈) ∈ 𝐵)
4232, 11, 37, 38, 41mulgnn0cld 19126 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
43 eqid 2735 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
44 eqid 2735 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
458, 43, 9, 44lmodvscl 20893 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ 𝐵)
4623, 31, 42, 45syl3anc 1370 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ 𝐵)
47 ssidd 4019 . . . 4 (𝜑 → ℕ0 ⊆ ℕ0)
48 fvexd 6922 . . . . 5 (𝜑 → (0g𝑊) ∈ V)
49 fveq2 6907 . . . . . 6 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
50 oveq1 7438 . . . . . 6 (𝑘 = 𝑗 → (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) = (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)))
5149, 50oveq12d 7449 . . . . 5 (𝑘 = 𝑗 → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))))
52 eqid 2735 . . . . . . . 8 (0g𝑈) = (0g𝑈)
5312, 8, 6, 52coe1ae0 22234 . . . . . . 7 (𝑀𝐵 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)))
545, 53syl 17 . . . . . 6 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)))
55 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝐴𝑗) = (0g𝑈))
5628ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → 𝑈 = (Scalar‘𝑊))
5756fveq2d 6911 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (0g𝑈) = (0g‘(Scalar‘𝑊)))
5855, 57eqtrd 2775 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝐴𝑗) = (0g‘(Scalar‘𝑊)))
5958oveq1d 7446 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))))
6022ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → 𝑊 ∈ LMod)
6134, 36syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑊) ∈ Mnd)
6261adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (mulGrp‘𝑊) ∈ Mnd)
63 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
644, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (var1𝑈) ∈ 𝐵)
6564adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (var1𝑈) ∈ 𝐵)
6632, 11, 62, 63, 65mulgnn0cld 19126 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
6766ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
68 eqid 2735 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
698, 43, 9, 68, 18lmod0vs 20910 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7060, 67, 69syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7159, 70eqtrd 2775 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7271ex 412 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝐴𝑗) = (0g𝑈) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊)))
7372imim2d 57 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7473ralimdva 3165 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → ∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7574reximdva 3166 . . . . . 6 (𝜑 → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7654, 75mpd 15 . . . . 5 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊)))
7748, 46, 51, 76mptnn0fsuppd 14036 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) finSupp (0g𝑊))
7816, 17, 6, 18, 2, 19, 8, 20, 1, 46, 47, 77evls1gsumadd 22344 . . 3 (𝜑 → (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))))
7916, 17, 19, 2, 6evls1rhm 22342 . . . . . . . . 9 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
8020, 1, 79syl2anc 584 . . . . . . . 8 (𝜑𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
8180adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
82 eqid 2735 . . . . . . . . . 10 (algSc‘𝑊) = (algSc‘𝑊)
8382, 43, 34, 22, 44, 8asclf 21920 . . . . . . . . 9 (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶𝐵)
8483adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶𝐵)
8584, 31ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((algSc‘𝑊)‘(𝐴𝑘)) ∈ 𝐵)
86 eqid 2735 . . . . . . . 8 (.r𝑊) = (.r𝑊)
87 eqid 2735 . . . . . . . 8 (.r‘(𝑆s 𝐾)) = (.r‘(𝑆s 𝐾))
888, 86, 87rhmmul 20503 . . . . . . 7 ((𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) ∧ ((algSc‘𝑊)‘(𝐴𝑘)) ∈ 𝐵 ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
8981, 85, 42, 88syl3anc 1370 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
902subrgcrng 20592 . . . . . . . . . . 11 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
9120, 1, 90syl2anc 584 . . . . . . . . . 10 (𝜑𝑈 ∈ CRing)
926ply1assa 22217 . . . . . . . . . 10 (𝑈 ∈ CRing → 𝑊 ∈ AssAlg)
9391, 92syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ AssAlg)
9493adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ AssAlg)
9582, 43, 44, 8, 86, 9asclmul1 21924 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → (((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))
9694, 31, 42, 95syl3anc 1370 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))
9796fveq2d 6911 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
98 eqid 2735 . . . . . . . 8 (Base‘(𝑆s 𝐾)) = (Base‘(𝑆s 𝐾))
9920adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑆 ∈ CRing)
10017fvexi 6921 . . . . . . . . 9 𝐾 ∈ V
101100a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐾 ∈ V)
1028, 98rhmf 20502 . . . . . . . . . 10 (𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
10381, 102syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
104103, 85ffvelcdmd 7105 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∈ (Base‘(𝑆s 𝐾)))
105103, 42ffvelcdmd 7105 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ (Base‘(𝑆s 𝐾)))
106 evls1fpws.1 . . . . . . . 8 · = (.r𝑆)
10719, 98, 99, 101, 104, 105, 106, 87pwsmulrval 17538 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∘f · (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
10819, 17, 98, 99, 101, 104pwselbas 17536 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))):𝐾𝐾)
109108ffnd 6738 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) Fn 𝐾)
11019, 17, 98, 99, 101, 105pwselbas 17536 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))):𝐾𝐾)
111110ffnd 6738 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) Fn 𝐾)
112 inidm 4235 . . . . . . . 8 (𝐾𝐾) = 𝐾
11320ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑆 ∈ CRing)
1141ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑅 ∈ (SubRing‘𝑆))
11517subrgss 20589 . . . . . . . . . . . . . 14 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
1161, 115syl 17 . . . . . . . . . . . . 13 (𝜑𝑅𝐾)
1172, 17ressbas2 17283 . . . . . . . . . . . . 13 (𝑅𝐾𝑅 = (Base‘𝑈))
118116, 117syl 17 . . . . . . . . . . . 12 (𝜑𝑅 = (Base‘𝑈))
119118adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑅 = (Base‘𝑈))
12026, 119eleqtrrd 2842 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ 𝑅)
121120adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝐴𝑘) ∈ 𝑅)
122 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑥𝐾)
12316, 6, 2, 17, 82, 113, 114, 121, 122evls1scafv 22386 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))‘𝑥) = (𝐴𝑘))
124 evls1fpws.2 . . . . . . . . 9 = (.g‘(mulGrp‘𝑆))
125 simplr 769 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑘 ∈ ℕ0)
12616, 2, 6, 7, 17, 11, 124, 113, 114, 125, 122evls1varpwval 22388 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))‘𝑥) = (𝑘 𝑥))
127109, 111, 101, 101, 112, 123, 126offval 7706 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∘f · (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
128107, 127eqtrd 2775 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
12989, 97, 1283eqtr3d 2783 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
130129mpteq2dva 5248 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))) = (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))))
131130oveq2d 7447 . . 3 (𝜑 → ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
132 eqid 2735 . . . 4 (0g‘(𝑆s 𝐾)) = (0g‘(𝑆s 𝐾))
133100a1i 11 . . . 4 (𝜑𝐾 ∈ V)
134 nn0ex 12530 . . . . 5 0 ∈ V
135134a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
13620crngringd 20264 . . . . 5 (𝜑𝑆 ∈ Ring)
137136ringcmnd 20298 . . . 4 (𝜑𝑆 ∈ CMnd)
138136ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑆 ∈ Ring)
1391adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ (SubRing‘𝑆))
140139, 115syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝑅𝐾)
141140, 120sseldd 3996 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ 𝐾)
142141adantr 480 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝐴𝑘) ∈ 𝐾)
143 eqid 2735 . . . . . . . . . 10 (mulGrp‘𝑆) = (mulGrp‘𝑆)
144143, 17mgpbas 20158 . . . . . . . . 9 𝐾 = (Base‘(mulGrp‘𝑆))
145143ringmgp 20257 . . . . . . . . . . 11 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
146136, 145syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
147146ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (mulGrp‘𝑆) ∈ Mnd)
148144, 124, 147, 125, 122mulgnn0cld 19126 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝑘 𝑥) ∈ 𝐾)
14917, 106, 138, 142, 148ringcld 20277 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1501493impa 1109 . . . . . 6 ((𝜑𝑘 ∈ ℕ0𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1511503com23 1125 . . . . 5 ((𝜑𝑥𝐾𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1521513expb 1119 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑘 ∈ ℕ0)) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
153135mptexd 7244 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∈ V)
154 funmpt 6606 . . . . . 6 Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
155154a1i 11 . . . . 5 (𝜑 → Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))))
156 fvexd 6922 . . . . 5 (𝜑 → (0g‘(𝑆s 𝐾)) ∈ V)
15712, 8, 6, 52coe1sfi 22231 . . . . . . 7 (𝑀𝐵𝐴 finSupp (0g𝑈))
1585, 157syl 17 . . . . . 6 (𝜑𝐴 finSupp (0g𝑈))
159158fsuppimpd 9407 . . . . 5 (𝜑 → (𝐴 supp (0g𝑈)) ∈ Fin)
16012, 8, 6, 24coe1f 22229 . . . . . . . . . . . . . . . . 17 (𝑀𝐵𝐴:ℕ0⟶(Base‘𝑈))
1615, 160syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴:ℕ0⟶(Base‘𝑈))
162161ffnd 6738 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn ℕ0)
163162adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → 𝐴 Fn ℕ0)
164134a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → ℕ0 ∈ V)
165 fvexd 6922 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (0g𝑈) ∈ V)
166 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → 𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈))))
167163, 164, 165, 166fvdifsupp 8195 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐴𝑘) = (0g𝑈))
168 eqid 2735 . . . . . . . . . . . . . . . 16 (0g𝑆) = (0g𝑆)
1692, 168subrg0 20596 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝑆) → (0g𝑆) = (0g𝑈))
1701, 169syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑆) = (0g𝑈))
171170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (0g𝑆) = (0g𝑈))
172167, 171eqtr4d 2778 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐴𝑘) = (0g𝑆))
173172adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (𝐴𝑘) = (0g𝑆))
174173oveq1d 7446 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) = ((0g𝑆) · (𝑘 𝑥)))
175136ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑆 ∈ Ring)
176175, 145syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (mulGrp‘𝑆) ∈ Mnd)
177 simplr 769 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈))))
178177eldifad 3975 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑘 ∈ ℕ0)
179 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑥𝐾)
180144, 124, 176, 178, 179mulgnn0cld 19126 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (𝑘 𝑥) ∈ 𝐾)
18117, 106, 168ringlz 20307 . . . . . . . . . . 11 ((𝑆 ∈ Ring ∧ (𝑘 𝑥) ∈ 𝐾) → ((0g𝑆) · (𝑘 𝑥)) = (0g𝑆))
182175, 180, 181syl2anc 584 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((0g𝑆) · (𝑘 𝑥)) = (0g𝑆))
183174, 182eqtrd 2775 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) = (0g𝑆))
184183mpteq2dva 5248 . . . . . . . 8 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (𝑥𝐾 ↦ (0g𝑆)))
185 fconstmpt 5751 . . . . . . . 8 (𝐾 × {(0g𝑆)}) = (𝑥𝐾 ↦ (0g𝑆))
186184, 185eqtr4di 2793 . . . . . . 7 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (𝐾 × {(0g𝑆)}))
187137cmnmndd 19837 . . . . . . . . 9 (𝜑𝑆 ∈ Mnd)
18819, 168pws0g 18799 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐾 ∈ V) → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
189187, 133, 188syl2anc 584 . . . . . . . 8 (𝜑 → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
190189adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
191186, 190eqtrd 2775 . . . . . 6 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (0g‘(𝑆s 𝐾)))
192191, 135suppss2 8224 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) supp (0g‘(𝑆s 𝐾))) ⊆ (𝐴 supp (0g𝑈)))
193 suppssfifsupp 9418 . . . . 5 ((((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∧ (0g‘(𝑆s 𝐾)) ∈ V) ∧ ((𝐴 supp (0g𝑈)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) supp (0g‘(𝑆s 𝐾))) ⊆ (𝐴 supp (0g𝑈)))) → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) finSupp (0g‘(𝑆s 𝐾)))
194153, 155, 156, 159, 192, 193syl32anc 1377 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) finSupp (0g‘(𝑆s 𝐾)))
19519, 17, 132, 133, 135, 137, 152, 194pwsgsum 20015 . . 3 (𝜑 → ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
19678, 131, 1953eqtrd 2779 . 2 (𝜑 → (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
19715, 196eqtrd 2775 1 (𝜑 → (𝑄𝑀) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  wss 3963  {csn 4631   class class class wbr 5148  cmpt 5231   × cxp 5687  Fun wfun 6557   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695   supp csupp 8184  Fincfn 8984   finSupp cfsupp 9399   < clt 11293  0cn0 12524  Basecbs 17245  s cress 17274  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486   Σg cgsu 17487  s cpws 17493  Mndcmnd 18760  .gcmg 19098  mulGrpcmgp 20152  Ringcrg 20251  CRingccrg 20252   RingHom crh 20486  SubRingcsubrg 20586  LModclmod 20875  AssAlgcasa 21888  algSccascl 21890  var1cv1 22193  Poly1cpl1 22194  coe1cco1 22195   evalSub1 ces1 22333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-evl 22117  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-evls1 22335  df-evl1 22336
This theorem is referenced by:  ressply1evl  22390  evl1fpws  33570  evls1fldgencl  33695
  Copyright terms: Public domain W3C validator