MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1fpws Structured version   Visualization version   GIF version

Theorem evls1fpws 22284
Description: Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1fpws.s (𝜑𝑆 ∈ CRing)
evls1fpws.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1fpws.y (𝜑𝑀𝐵)
evls1fpws.1 · = (.r𝑆)
evls1fpws.2 = (.g‘(mulGrp‘𝑆))
evls1fpws.a 𝐴 = (coe1𝑀)
Assertion
Ref Expression
evls1fpws (𝜑 → (𝑄𝑀) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
Distinct variable groups:   · ,𝑘,𝑥   𝐴,𝑘,𝑥   𝐵,𝑘   𝑘,𝐾,𝑥   𝑘,𝑀   𝑄,𝑘,𝑥   𝑆,𝑘,𝑥   𝑈,𝑘,𝑥   𝑘,𝑊,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥,𝑘)   (𝑥,𝑘)   𝑀(𝑥)

Proof of Theorem evls1fpws
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fpws.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
2 ressply1evl2.u . . . . . 6 𝑈 = (𝑆s 𝑅)
32subrgring 20489 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑈 ∈ Ring)
5 evls1fpws.y . . . 4 (𝜑𝑀𝐵)
6 ressply1evl2.w . . . . 5 𝑊 = (Poly1𝑈)
7 eqid 2731 . . . . 5 (var1𝑈) = (var1𝑈)
8 ressply1evl2.b . . . . 5 𝐵 = (Base‘𝑊)
9 eqid 2731 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 eqid 2731 . . . . 5 (mulGrp‘𝑊) = (mulGrp‘𝑊)
11 eqid 2731 . . . . 5 (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝑊))
12 evls1fpws.a . . . . 5 𝐴 = (coe1𝑀)
136, 7, 8, 9, 10, 11, 12ply1coe 22213 . . . 4 ((𝑈 ∈ Ring ∧ 𝑀𝐵) → 𝑀 = (𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))))
144, 5, 13syl2anc 584 . . 3 (𝜑𝑀 = (𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))))
1514fveq2d 6826 . 2 (𝜑 → (𝑄𝑀) = (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))))
16 ressply1evl2.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
17 ressply1evl2.k . . . 4 𝐾 = (Base‘𝑆)
18 eqid 2731 . . . 4 (0g𝑊) = (0g𝑊)
19 eqid 2731 . . . 4 (𝑆s 𝐾) = (𝑆s 𝐾)
20 evls1fpws.s . . . 4 (𝜑𝑆 ∈ CRing)
216ply1lmod 22164 . . . . . . 7 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
224, 21syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
2322adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ LMod)
24 eqid 2731 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
2512, 8, 6, 24coe1fvalcl 22125 . . . . . . 7 ((𝑀𝐵𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑈))
265, 25sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑈))
276ply1sca 22165 . . . . . . . . 9 (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊))
284, 27syl 17 . . . . . . . 8 (𝜑𝑈 = (Scalar‘𝑊))
2928fveq2d 6826 . . . . . . 7 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3029adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3126, 30eleqtrd 2833 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)))
3210, 8mgpbas 20063 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑊))
336ply1ring 22160 . . . . . . . . 9 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
344, 33syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Ring)
3534adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ Ring)
3610ringmgp 20157 . . . . . . 7 (𝑊 ∈ Ring → (mulGrp‘𝑊) ∈ Mnd)
3735, 36syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑊) ∈ Mnd)
38 simpr 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
394adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑈 ∈ Ring)
407, 6, 8vr1cl 22130 . . . . . . 7 (𝑈 ∈ Ring → (var1𝑈) ∈ 𝐵)
4139, 40syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (var1𝑈) ∈ 𝐵)
4232, 11, 37, 38, 41mulgnn0cld 19008 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
43 eqid 2731 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
44 eqid 2731 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
458, 43, 9, 44lmodvscl 20811 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ 𝐵)
4623, 31, 42, 45syl3anc 1373 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ 𝐵)
47 ssidd 3953 . . . 4 (𝜑 → ℕ0 ⊆ ℕ0)
48 fvexd 6837 . . . . 5 (𝜑 → (0g𝑊) ∈ V)
49 fveq2 6822 . . . . . 6 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
50 oveq1 7353 . . . . . 6 (𝑘 = 𝑗 → (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) = (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)))
5149, 50oveq12d 7364 . . . . 5 (𝑘 = 𝑗 → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))))
52 eqid 2731 . . . . . . . 8 (0g𝑈) = (0g𝑈)
5312, 8, 6, 52coe1ae0 22129 . . . . . . 7 (𝑀𝐵 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)))
545, 53syl 17 . . . . . 6 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)))
55 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝐴𝑗) = (0g𝑈))
5628ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → 𝑈 = (Scalar‘𝑊))
5756fveq2d 6826 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (0g𝑈) = (0g‘(Scalar‘𝑊)))
5855, 57eqtrd 2766 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝐴𝑗) = (0g‘(Scalar‘𝑊)))
5958oveq1d 7361 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))))
6022ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → 𝑊 ∈ LMod)
6134, 36syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑊) ∈ Mnd)
6261adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (mulGrp‘𝑊) ∈ Mnd)
63 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
644, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (var1𝑈) ∈ 𝐵)
6564adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (var1𝑈) ∈ 𝐵)
6632, 11, 62, 63, 65mulgnn0cld 19008 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
6766ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
68 eqid 2731 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
698, 43, 9, 68, 18lmod0vs 20828 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7060, 67, 69syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7159, 70eqtrd 2766 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7271ex 412 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝐴𝑗) = (0g𝑈) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊)))
7372imim2d 57 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7473ralimdva 3144 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → ∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7574reximdva 3145 . . . . . 6 (𝜑 → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7654, 75mpd 15 . . . . 5 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊)))
7748, 46, 51, 76mptnn0fsuppd 13905 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) finSupp (0g𝑊))
7816, 17, 6, 18, 2, 19, 8, 20, 1, 46, 47, 77evls1gsumadd 22239 . . 3 (𝜑 → (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))))
7916, 17, 19, 2, 6evls1rhm 22237 . . . . . . . . 9 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
8020, 1, 79syl2anc 584 . . . . . . . 8 (𝜑𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
8180adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
82 eqid 2731 . . . . . . . . . 10 (algSc‘𝑊) = (algSc‘𝑊)
8382, 43, 34, 22, 44, 8asclf 21819 . . . . . . . . 9 (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶𝐵)
8483adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶𝐵)
8584, 31ffvelcdmd 7018 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((algSc‘𝑊)‘(𝐴𝑘)) ∈ 𝐵)
86 eqid 2731 . . . . . . . 8 (.r𝑊) = (.r𝑊)
87 eqid 2731 . . . . . . . 8 (.r‘(𝑆s 𝐾)) = (.r‘(𝑆s 𝐾))
888, 86, 87rhmmul 20403 . . . . . . 7 ((𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) ∧ ((algSc‘𝑊)‘(𝐴𝑘)) ∈ 𝐵 ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
8981, 85, 42, 88syl3anc 1373 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
902subrgcrng 20490 . . . . . . . . . . 11 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
9120, 1, 90syl2anc 584 . . . . . . . . . 10 (𝜑𝑈 ∈ CRing)
926ply1assa 22112 . . . . . . . . . 10 (𝑈 ∈ CRing → 𝑊 ∈ AssAlg)
9391, 92syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ AssAlg)
9493adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ AssAlg)
9582, 43, 44, 8, 86, 9asclmul1 21823 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → (((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))
9694, 31, 42, 95syl3anc 1373 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))
9796fveq2d 6826 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
98 eqid 2731 . . . . . . . 8 (Base‘(𝑆s 𝐾)) = (Base‘(𝑆s 𝐾))
9920adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑆 ∈ CRing)
10017fvexi 6836 . . . . . . . . 9 𝐾 ∈ V
101100a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐾 ∈ V)
1028, 98rhmf 20402 . . . . . . . . . 10 (𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
10381, 102syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
104103, 85ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∈ (Base‘(𝑆s 𝐾)))
105103, 42ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ (Base‘(𝑆s 𝐾)))
106 evls1fpws.1 . . . . . . . 8 · = (.r𝑆)
10719, 98, 99, 101, 104, 105, 106, 87pwsmulrval 17395 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∘f · (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
10819, 17, 98, 99, 101, 104pwselbas 17393 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))):𝐾𝐾)
109108ffnd 6652 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) Fn 𝐾)
11019, 17, 98, 99, 101, 105pwselbas 17393 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))):𝐾𝐾)
111110ffnd 6652 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) Fn 𝐾)
112 inidm 4174 . . . . . . . 8 (𝐾𝐾) = 𝐾
11320ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑆 ∈ CRing)
1141ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑅 ∈ (SubRing‘𝑆))
11517subrgss 20487 . . . . . . . . . . . . . 14 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
1161, 115syl 17 . . . . . . . . . . . . 13 (𝜑𝑅𝐾)
1172, 17ressbas2 17149 . . . . . . . . . . . . 13 (𝑅𝐾𝑅 = (Base‘𝑈))
118116, 117syl 17 . . . . . . . . . . . 12 (𝜑𝑅 = (Base‘𝑈))
119118adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑅 = (Base‘𝑈))
12026, 119eleqtrrd 2834 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ 𝑅)
121120adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝐴𝑘) ∈ 𝑅)
122 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑥𝐾)
12316, 6, 2, 17, 82, 113, 114, 121, 122evls1scafv 22281 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))‘𝑥) = (𝐴𝑘))
124 evls1fpws.2 . . . . . . . . 9 = (.g‘(mulGrp‘𝑆))
125 simplr 768 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑘 ∈ ℕ0)
12616, 2, 6, 7, 17, 11, 124, 113, 114, 125, 122evls1varpwval 22283 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))‘𝑥) = (𝑘 𝑥))
127109, 111, 101, 101, 112, 123, 126offval 7619 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∘f · (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
128107, 127eqtrd 2766 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
12989, 97, 1283eqtr3d 2774 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
130129mpteq2dva 5182 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))) = (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))))
131130oveq2d 7362 . . 3 (𝜑 → ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
132 eqid 2731 . . . 4 (0g‘(𝑆s 𝐾)) = (0g‘(𝑆s 𝐾))
133100a1i 11 . . . 4 (𝜑𝐾 ∈ V)
134 nn0ex 12387 . . . . 5 0 ∈ V
135134a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
13620crngringd 20164 . . . . 5 (𝜑𝑆 ∈ Ring)
137136ringcmnd 20202 . . . 4 (𝜑𝑆 ∈ CMnd)
138136ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑆 ∈ Ring)
1391adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ (SubRing‘𝑆))
140139, 115syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝑅𝐾)
141140, 120sseldd 3930 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ 𝐾)
142141adantr 480 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝐴𝑘) ∈ 𝐾)
143 eqid 2731 . . . . . . . . . 10 (mulGrp‘𝑆) = (mulGrp‘𝑆)
144143, 17mgpbas 20063 . . . . . . . . 9 𝐾 = (Base‘(mulGrp‘𝑆))
145143ringmgp 20157 . . . . . . . . . . 11 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
146136, 145syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
147146ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (mulGrp‘𝑆) ∈ Mnd)
148144, 124, 147, 125, 122mulgnn0cld 19008 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝑘 𝑥) ∈ 𝐾)
14917, 106, 138, 142, 148ringcld 20178 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1501493impa 1109 . . . . . 6 ((𝜑𝑘 ∈ ℕ0𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1511503com23 1126 . . . . 5 ((𝜑𝑥𝐾𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1521513expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑘 ∈ ℕ0)) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
153135mptexd 7158 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∈ V)
154 funmpt 6519 . . . . . 6 Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
155154a1i 11 . . . . 5 (𝜑 → Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))))
156 fvexd 6837 . . . . 5 (𝜑 → (0g‘(𝑆s 𝐾)) ∈ V)
15712, 8, 6, 52coe1sfi 22126 . . . . . . 7 (𝑀𝐵𝐴 finSupp (0g𝑈))
1585, 157syl 17 . . . . . 6 (𝜑𝐴 finSupp (0g𝑈))
159158fsuppimpd 9253 . . . . 5 (𝜑 → (𝐴 supp (0g𝑈)) ∈ Fin)
16012, 8, 6, 24coe1f 22124 . . . . . . . . . . . . . . . . 17 (𝑀𝐵𝐴:ℕ0⟶(Base‘𝑈))
1615, 160syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴:ℕ0⟶(Base‘𝑈))
162161ffnd 6652 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn ℕ0)
163162adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → 𝐴 Fn ℕ0)
164134a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → ℕ0 ∈ V)
165 fvexd 6837 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (0g𝑈) ∈ V)
166 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → 𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈))))
167163, 164, 165, 166fvdifsupp 8101 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐴𝑘) = (0g𝑈))
168 eqid 2731 . . . . . . . . . . . . . . . 16 (0g𝑆) = (0g𝑆)
1692, 168subrg0 20494 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝑆) → (0g𝑆) = (0g𝑈))
1701, 169syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑆) = (0g𝑈))
171170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (0g𝑆) = (0g𝑈))
172167, 171eqtr4d 2769 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐴𝑘) = (0g𝑆))
173172adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (𝐴𝑘) = (0g𝑆))
174173oveq1d 7361 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) = ((0g𝑆) · (𝑘 𝑥)))
175136ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑆 ∈ Ring)
176175, 145syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (mulGrp‘𝑆) ∈ Mnd)
177 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈))))
178177eldifad 3909 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑘 ∈ ℕ0)
179 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑥𝐾)
180144, 124, 176, 178, 179mulgnn0cld 19008 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (𝑘 𝑥) ∈ 𝐾)
18117, 106, 168ringlz 20211 . . . . . . . . . . 11 ((𝑆 ∈ Ring ∧ (𝑘 𝑥) ∈ 𝐾) → ((0g𝑆) · (𝑘 𝑥)) = (0g𝑆))
182175, 180, 181syl2anc 584 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((0g𝑆) · (𝑘 𝑥)) = (0g𝑆))
183174, 182eqtrd 2766 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) = (0g𝑆))
184183mpteq2dva 5182 . . . . . . . 8 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (𝑥𝐾 ↦ (0g𝑆)))
185 fconstmpt 5676 . . . . . . . 8 (𝐾 × {(0g𝑆)}) = (𝑥𝐾 ↦ (0g𝑆))
186184, 185eqtr4di 2784 . . . . . . 7 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (𝐾 × {(0g𝑆)}))
187137cmnmndd 19716 . . . . . . . . 9 (𝜑𝑆 ∈ Mnd)
18819, 168pws0g 18681 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐾 ∈ V) → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
189187, 133, 188syl2anc 584 . . . . . . . 8 (𝜑 → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
190189adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
191186, 190eqtrd 2766 . . . . . 6 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (0g‘(𝑆s 𝐾)))
192191, 135suppss2 8130 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) supp (0g‘(𝑆s 𝐾))) ⊆ (𝐴 supp (0g𝑈)))
193 suppssfifsupp 9264 . . . . 5 ((((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∧ (0g‘(𝑆s 𝐾)) ∈ V) ∧ ((𝐴 supp (0g𝑈)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) supp (0g‘(𝑆s 𝐾))) ⊆ (𝐴 supp (0g𝑈)))) → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) finSupp (0g‘(𝑆s 𝐾)))
194153, 155, 156, 159, 192, 193syl32anc 1380 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) finSupp (0g‘(𝑆s 𝐾)))
19519, 17, 132, 133, 135, 137, 152, 194pwsgsum 19894 . . 3 (𝜑 → ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
19678, 131, 1953eqtrd 2770 . 2 (𝜑 → (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
19715, 196eqtrd 2766 1 (𝜑 → (𝑄𝑀) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  wss 3897  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245   < clt 11146  0cn0 12381  Basecbs 17120  s cress 17141  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  s cpws 17350  Mndcmnd 18642  .gcmg 18980  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  SubRingcsubrg 20484  LModclmod 20793  AssAlgcasa 21787  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089  coe1cco1 22090   evalSub1 ces1 22228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evls1 22230  df-evl1 22231
This theorem is referenced by:  ressply1evl  22285  evl1fpws  33527  ressply1evls1  33528  evls1fldgencl  33683
  Copyright terms: Public domain W3C validator