MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1fpws Structured version   Visualization version   GIF version

Theorem evls1fpws 22256
Description: Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025.)
Hypotheses
Ref Expression
ressply1evl2.q 𝑄 = (𝑆 evalSub1 𝑅)
ressply1evl2.k 𝐾 = (Base‘𝑆)
ressply1evl2.w 𝑊 = (Poly1𝑈)
ressply1evl2.u 𝑈 = (𝑆s 𝑅)
ressply1evl2.b 𝐵 = (Base‘𝑊)
evls1fpws.s (𝜑𝑆 ∈ CRing)
evls1fpws.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1fpws.y (𝜑𝑀𝐵)
evls1fpws.1 · = (.r𝑆)
evls1fpws.2 = (.g‘(mulGrp‘𝑆))
evls1fpws.a 𝐴 = (coe1𝑀)
Assertion
Ref Expression
evls1fpws (𝜑 → (𝑄𝑀) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
Distinct variable groups:   · ,𝑘,𝑥   𝐴,𝑘,𝑥   𝐵,𝑘   𝑘,𝐾,𝑥   𝑘,𝑀   𝑄,𝑘,𝑥   𝑆,𝑘,𝑥   𝑈,𝑘,𝑥   𝑘,𝑊,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥,𝑘)   (𝑥,𝑘)   𝑀(𝑥)

Proof of Theorem evls1fpws
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fpws.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
2 ressply1evl2.u . . . . . 6 𝑈 = (𝑆s 𝑅)
32subrgring 20483 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑈 ∈ Ring)
5 evls1fpws.y . . . 4 (𝜑𝑀𝐵)
6 ressply1evl2.w . . . . 5 𝑊 = (Poly1𝑈)
7 eqid 2729 . . . . 5 (var1𝑈) = (var1𝑈)
8 ressply1evl2.b . . . . 5 𝐵 = (Base‘𝑊)
9 eqid 2729 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 eqid 2729 . . . . 5 (mulGrp‘𝑊) = (mulGrp‘𝑊)
11 eqid 2729 . . . . 5 (.g‘(mulGrp‘𝑊)) = (.g‘(mulGrp‘𝑊))
12 evls1fpws.a . . . . 5 𝐴 = (coe1𝑀)
136, 7, 8, 9, 10, 11, 12ply1coe 22185 . . . 4 ((𝑈 ∈ Ring ∧ 𝑀𝐵) → 𝑀 = (𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))))
144, 5, 13syl2anc 584 . . 3 (𝜑𝑀 = (𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))))
1514fveq2d 6862 . 2 (𝜑 → (𝑄𝑀) = (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))))
16 ressply1evl2.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
17 ressply1evl2.k . . . 4 𝐾 = (Base‘𝑆)
18 eqid 2729 . . . 4 (0g𝑊) = (0g𝑊)
19 eqid 2729 . . . 4 (𝑆s 𝐾) = (𝑆s 𝐾)
20 evls1fpws.s . . . 4 (𝜑𝑆 ∈ CRing)
216ply1lmod 22136 . . . . . . 7 (𝑈 ∈ Ring → 𝑊 ∈ LMod)
224, 21syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
2322adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ LMod)
24 eqid 2729 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
2512, 8, 6, 24coe1fvalcl 22097 . . . . . . 7 ((𝑀𝐵𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑈))
265, 25sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑈))
276ply1sca 22137 . . . . . . . . 9 (𝑈 ∈ Ring → 𝑈 = (Scalar‘𝑊))
284, 27syl 17 . . . . . . . 8 (𝜑𝑈 = (Scalar‘𝑊))
2928fveq2d 6862 . . . . . . 7 (𝜑 → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3029adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (Base‘𝑈) = (Base‘(Scalar‘𝑊)))
3126, 30eleqtrd 2830 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)))
3210, 8mgpbas 20054 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑊))
336ply1ring 22132 . . . . . . . . 9 (𝑈 ∈ Ring → 𝑊 ∈ Ring)
344, 33syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Ring)
3534adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ Ring)
3610ringmgp 20148 . . . . . . 7 (𝑊 ∈ Ring → (mulGrp‘𝑊) ∈ Mnd)
3735, 36syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (mulGrp‘𝑊) ∈ Mnd)
38 simpr 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
394adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑈 ∈ Ring)
407, 6, 8vr1cl 22102 . . . . . . 7 (𝑈 ∈ Ring → (var1𝑈) ∈ 𝐵)
4139, 40syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (var1𝑈) ∈ 𝐵)
4232, 11, 37, 38, 41mulgnn0cld 19027 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
43 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
44 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
458, 43, 9, 44lmodvscl 20784 . . . . 5 ((𝑊 ∈ LMod ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ 𝐵)
4623, 31, 42, 45syl3anc 1373 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ 𝐵)
47 ssidd 3970 . . . 4 (𝜑 → ℕ0 ⊆ ℕ0)
48 fvexd 6873 . . . . 5 (𝜑 → (0g𝑊) ∈ V)
49 fveq2 6858 . . . . . 6 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
50 oveq1 7394 . . . . . 6 (𝑘 = 𝑗 → (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) = (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)))
5149, 50oveq12d 7405 . . . . 5 (𝑘 = 𝑗 → ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))))
52 eqid 2729 . . . . . . . 8 (0g𝑈) = (0g𝑈)
5312, 8, 6, 52coe1ae0 22101 . . . . . . 7 (𝑀𝐵 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)))
545, 53syl 17 . . . . . 6 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)))
55 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝐴𝑗) = (0g𝑈))
5628ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → 𝑈 = (Scalar‘𝑊))
5756fveq2d 6862 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (0g𝑈) = (0g‘(Scalar‘𝑊)))
5855, 57eqtrd 2764 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝐴𝑗) = (0g‘(Scalar‘𝑊)))
5958oveq1d 7402 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))))
6022ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → 𝑊 ∈ LMod)
6134, 36syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (mulGrp‘𝑊) ∈ Mnd)
6261adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (mulGrp‘𝑊) ∈ Mnd)
63 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
644, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (var1𝑈) ∈ 𝐵)
6564adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (var1𝑈) ∈ 𝐵)
6632, 11, 62, 63, 65mulgnn0cld 19027 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
6766ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵)
68 eqid 2729 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
698, 43, 9, 68, 18lmod0vs 20801 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7060, 67, 69syl2anc 584 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7159, 70eqtrd 2764 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) ∧ (𝐴𝑗) = (0g𝑈)) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))
7271ex 412 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝐴𝑗) = (0g𝑈) → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊)))
7372imim2d 57 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → ((𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7473ralimdva 3145 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → ∀𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7574reximdva 3146 . . . . . 6 (𝜑 → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → (𝐴𝑗) = (0g𝑈)) → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊))))
7654, 75mpd 15 . . . . 5 (𝜑 → ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (𝑖 < 𝑗 → ((𝐴𝑗)( ·𝑠𝑊)(𝑗(.g‘(mulGrp‘𝑊))(var1𝑈))) = (0g𝑊)))
7748, 46, 51, 76mptnn0fsuppd 13963 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) finSupp (0g𝑊))
7816, 17, 6, 18, 2, 19, 8, 20, 1, 46, 47, 77evls1gsumadd 22211 . . 3 (𝜑 → (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))))
7916, 17, 19, 2, 6evls1rhm 22209 . . . . . . . . 9 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
8020, 1, 79syl2anc 584 . . . . . . . 8 (𝜑𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
8180adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
82 eqid 2729 . . . . . . . . . 10 (algSc‘𝑊) = (algSc‘𝑊)
8382, 43, 34, 22, 44, 8asclf 21791 . . . . . . . . 9 (𝜑 → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶𝐵)
8483adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (algSc‘𝑊):(Base‘(Scalar‘𝑊))⟶𝐵)
8584, 31ffvelcdmd 7057 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((algSc‘𝑊)‘(𝐴𝑘)) ∈ 𝐵)
86 eqid 2729 . . . . . . . 8 (.r𝑊) = (.r𝑊)
87 eqid 2729 . . . . . . . 8 (.r‘(𝑆s 𝐾)) = (.r‘(𝑆s 𝐾))
888, 86, 87rhmmul 20395 . . . . . . 7 ((𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) ∧ ((algSc‘𝑊)‘(𝐴𝑘)) ∈ 𝐵 ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
8981, 85, 42, 88syl3anc 1373 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
902subrgcrng 20484 . . . . . . . . . . 11 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
9120, 1, 90syl2anc 584 . . . . . . . . . 10 (𝜑𝑈 ∈ CRing)
926ply1assa 22084 . . . . . . . . . 10 (𝑈 ∈ CRing → 𝑊 ∈ AssAlg)
9391, 92syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ AssAlg)
9493adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑊 ∈ AssAlg)
9582, 43, 44, 8, 86, 9asclmul1 21795 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)) ∈ 𝐵) → (((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))
9694, 31, 42, 95syl3anc 1373 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) = ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))
9796fveq2d 6862 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(((algSc‘𝑊)‘(𝐴𝑘))(.r𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
98 eqid 2729 . . . . . . . 8 (Base‘(𝑆s 𝐾)) = (Base‘(𝑆s 𝐾))
9920adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑆 ∈ CRing)
10017fvexi 6872 . . . . . . . . 9 𝐾 ∈ V
101100a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐾 ∈ V)
1028, 98rhmf 20394 . . . . . . . . . 10 (𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
10381, 102syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
104103, 85ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∈ (Base‘(𝑆s 𝐾)))
105103, 42ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) ∈ (Base‘(𝑆s 𝐾)))
106 evls1fpws.1 . . . . . . . 8 · = (.r𝑆)
10719, 98, 99, 101, 104, 105, 106, 87pwsmulrval 17454 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∘f · (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))
10819, 17, 98, 99, 101, 104pwselbas 17452 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))):𝐾𝐾)
109108ffnd 6689 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) Fn 𝐾)
11019, 17, 98, 99, 101, 105pwselbas 17452 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))):𝐾𝐾)
111110ffnd 6689 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))) Fn 𝐾)
112 inidm 4190 . . . . . . . 8 (𝐾𝐾) = 𝐾
11320ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑆 ∈ CRing)
1141ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑅 ∈ (SubRing‘𝑆))
11517subrgss 20481 . . . . . . . . . . . . . 14 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
1161, 115syl 17 . . . . . . . . . . . . 13 (𝜑𝑅𝐾)
1172, 17ressbas2 17208 . . . . . . . . . . . . 13 (𝑅𝐾𝑅 = (Base‘𝑈))
118116, 117syl 17 . . . . . . . . . . . 12 (𝜑𝑅 = (Base‘𝑈))
119118adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑅 = (Base‘𝑈))
12026, 119eleqtrrd 2831 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ 𝑅)
121120adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝐴𝑘) ∈ 𝑅)
122 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑥𝐾)
12316, 6, 2, 17, 82, 113, 114, 121, 122evls1scafv 22253 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))‘𝑥) = (𝐴𝑘))
124 evls1fpws.2 . . . . . . . . 9 = (.g‘(mulGrp‘𝑆))
125 simplr 768 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑘 ∈ ℕ0)
12616, 2, 6, 7, 17, 11, 124, 113, 114, 125, 122evls1varpwval 22255 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))‘𝑥) = (𝑘 𝑥))
127109, 111, 101, 101, 112, 123, 126offval 7662 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘))) ∘f · (𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
128107, 127eqtrd 2764 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑄‘((algSc‘𝑊)‘(𝐴𝑘)))(.r‘(𝑆s 𝐾))(𝑄‘(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
12989, 97, 1283eqtr3d 2772 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))) = (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
130129mpteq2dva 5200 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈))))) = (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))))
131130oveq2d 7403 . . 3 (𝜑 → ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑄‘((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
132 eqid 2729 . . . 4 (0g‘(𝑆s 𝐾)) = (0g‘(𝑆s 𝐾))
133100a1i 11 . . . 4 (𝜑𝐾 ∈ V)
134 nn0ex 12448 . . . . 5 0 ∈ V
135134a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
13620crngringd 20155 . . . . 5 (𝜑𝑆 ∈ Ring)
137136ringcmnd 20193 . . . 4 (𝜑𝑆 ∈ CMnd)
138136ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → 𝑆 ∈ Ring)
1391adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑅 ∈ (SubRing‘𝑆))
140139, 115syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝑅𝐾)
141140, 120sseldd 3947 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ 𝐾)
142141adantr 480 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝐴𝑘) ∈ 𝐾)
143 eqid 2729 . . . . . . . . . 10 (mulGrp‘𝑆) = (mulGrp‘𝑆)
144143, 17mgpbas 20054 . . . . . . . . 9 𝐾 = (Base‘(mulGrp‘𝑆))
145143ringmgp 20148 . . . . . . . . . . 11 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
146136, 145syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
147146ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (mulGrp‘𝑆) ∈ Mnd)
148144, 124, 147, 125, 122mulgnn0cld 19027 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → (𝑘 𝑥) ∈ 𝐾)
14917, 106, 138, 142, 148ringcld 20169 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1501493impa 1109 . . . . . 6 ((𝜑𝑘 ∈ ℕ0𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1511503com23 1126 . . . . 5 ((𝜑𝑥𝐾𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
1521513expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑘 ∈ ℕ0)) → ((𝐴𝑘) · (𝑘 𝑥)) ∈ 𝐾)
153135mptexd 7198 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∈ V)
154 funmpt 6554 . . . . . 6 Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))
155154a1i 11 . . . . 5 (𝜑 → Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))))
156 fvexd 6873 . . . . 5 (𝜑 → (0g‘(𝑆s 𝐾)) ∈ V)
15712, 8, 6, 52coe1sfi 22098 . . . . . . 7 (𝑀𝐵𝐴 finSupp (0g𝑈))
1585, 157syl 17 . . . . . 6 (𝜑𝐴 finSupp (0g𝑈))
159158fsuppimpd 9320 . . . . 5 (𝜑 → (𝐴 supp (0g𝑈)) ∈ Fin)
16012, 8, 6, 24coe1f 22096 . . . . . . . . . . . . . . . . 17 (𝑀𝐵𝐴:ℕ0⟶(Base‘𝑈))
1615, 160syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴:ℕ0⟶(Base‘𝑈))
162161ffnd 6689 . . . . . . . . . . . . . . 15 (𝜑𝐴 Fn ℕ0)
163162adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → 𝐴 Fn ℕ0)
164134a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → ℕ0 ∈ V)
165 fvexd 6873 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (0g𝑈) ∈ V)
166 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → 𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈))))
167163, 164, 165, 166fvdifsupp 8150 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐴𝑘) = (0g𝑈))
168 eqid 2729 . . . . . . . . . . . . . . . 16 (0g𝑆) = (0g𝑆)
1692, 168subrg0 20488 . . . . . . . . . . . . . . 15 (𝑅 ∈ (SubRing‘𝑆) → (0g𝑆) = (0g𝑈))
1701, 169syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑆) = (0g𝑈))
171170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (0g𝑆) = (0g𝑈))
172167, 171eqtr4d 2767 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐴𝑘) = (0g𝑆))
173172adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (𝐴𝑘) = (0g𝑆))
174173oveq1d 7402 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) = ((0g𝑆) · (𝑘 𝑥)))
175136ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑆 ∈ Ring)
176175, 145syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (mulGrp‘𝑆) ∈ Mnd)
177 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈))))
178177eldifad 3926 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑘 ∈ ℕ0)
179 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → 𝑥𝐾)
180144, 124, 176, 178, 179mulgnn0cld 19027 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → (𝑘 𝑥) ∈ 𝐾)
18117, 106, 168ringlz 20202 . . . . . . . . . . 11 ((𝑆 ∈ Ring ∧ (𝑘 𝑥) ∈ 𝐾) → ((0g𝑆) · (𝑘 𝑥)) = (0g𝑆))
182175, 180, 181syl2anc 584 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((0g𝑆) · (𝑘 𝑥)) = (0g𝑆))
183174, 182eqtrd 2764 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) ∧ 𝑥𝐾) → ((𝐴𝑘) · (𝑘 𝑥)) = (0g𝑆))
184183mpteq2dva 5200 . . . . . . . 8 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (𝑥𝐾 ↦ (0g𝑆)))
185 fconstmpt 5700 . . . . . . . 8 (𝐾 × {(0g𝑆)}) = (𝑥𝐾 ↦ (0g𝑆))
186184, 185eqtr4di 2782 . . . . . . 7 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (𝐾 × {(0g𝑆)}))
187137cmnmndd 19734 . . . . . . . . 9 (𝜑𝑆 ∈ Mnd)
18819, 168pws0g 18700 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝐾 ∈ V) → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
189187, 133, 188syl2anc 584 . . . . . . . 8 (𝜑 → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
190189adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝐾 × {(0g𝑆)}) = (0g‘(𝑆s 𝐾)))
191186, 190eqtrd 2764 . . . . . 6 ((𝜑𝑘 ∈ (ℕ0 ∖ (𝐴 supp (0g𝑈)))) → (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))) = (0g‘(𝑆s 𝐾)))
192191, 135suppss2 8179 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) supp (0g‘(𝑆s 𝐾))) ⊆ (𝐴 supp (0g𝑈)))
193 suppssfifsupp 9331 . . . . 5 ((((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) ∧ (0g‘(𝑆s 𝐾)) ∈ V) ∧ ((𝐴 supp (0g𝑈)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) supp (0g‘(𝑆s 𝐾))) ⊆ (𝐴 supp (0g𝑈)))) → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) finSupp (0g‘(𝑆s 𝐾)))
194153, 155, 156, 159, 192, 193syl32anc 1380 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥)))) finSupp (0g‘(𝑆s 𝐾)))
19519, 17, 132, 133, 135, 137, 152, 194pwsgsum 19912 . . 3 (𝜑 → ((𝑆s 𝐾) Σg (𝑘 ∈ ℕ0 ↦ (𝑥𝐾 ↦ ((𝐴𝑘) · (𝑘 𝑥))))) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
19678, 131, 1953eqtrd 2768 . 2 (𝜑 → (𝑄‘(𝑊 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘)( ·𝑠𝑊)(𝑘(.g‘(mulGrp‘𝑊))(var1𝑈)))))) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
19715, 196eqtrd 2764 1 (𝜑 → (𝑄𝑀) = (𝑥𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651   supp csupp 8139  Fincfn 8918   finSupp cfsupp 9312   < clt 11208  0cn0 12442  Basecbs 17179  s cress 17200  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  s cpws 17409  Mndcmnd 18661  .gcmg 18999  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378  SubRingcsubrg 20478  LModclmod 20766  AssAlgcasa 21759  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  coe1cco1 22062   evalSub1 ces1 22200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203
This theorem is referenced by:  ressply1evl  22257  evl1fpws  33533  ressply1evls1  33534  evls1fldgencl  33665
  Copyright terms: Public domain W3C validator