MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvdco Structured version   Visualization version   GIF version

Theorem mvdco 19313
Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
mvdco dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))

Proof of Theorem mvdco
StepHypRef Expression
1 inundif 4479 . . . . . . . 8 ((𝐺 ∩ I ) ∪ (𝐺 ∖ I )) = 𝐺
21coeq2i 5861 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = (𝐹𝐺)
3 coundi 6247 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
42, 3eqtr3i 2763 . . . . . 6 (𝐹𝐺) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
54difeq1i 4119 . . . . 5 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I )
6 difundir 4281 . . . . 5 (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
75, 6eqtri 2761 . . . 4 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
87dmeqi 5905 . . 3 dom ((𝐹𝐺) ∖ I ) = dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
9 dmun 5911 . . 3 dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
108, 9eqtri 2761 . 2 dom ((𝐹𝐺) ∖ I ) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
11 inss2 4230 . . . . . 6 (𝐺 ∩ I ) ⊆ I
12 coss2 5857 . . . . . 6 ((𝐺 ∩ I ) ⊆ I → (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I ))
1311, 12ax-mp 5 . . . . 5 (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I )
14 cocnvcnv1 6257 . . . . . . 7 (𝐹 ∘ I ) = (𝐹 ∘ I )
15 relcnv 6104 . . . . . . . 8 Rel 𝐹
16 coi1 6262 . . . . . . . 8 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1715, 16ax-mp 5 . . . . . . 7 (𝐹 ∘ I ) = 𝐹
1814, 17eqtr3i 2763 . . . . . 6 (𝐹 ∘ I ) = 𝐹
19 cnvcnvss 6194 . . . . . 6 𝐹𝐹
2018, 19eqsstri 4017 . . . . 5 (𝐹 ∘ I ) ⊆ 𝐹
2113, 20sstri 3992 . . . 4 (𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹
22 ssdif 4140 . . . 4 ((𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹 → ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ))
23 dmss 5903 . . . 4 (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ) → dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ))
2421, 22, 23mp2b 10 . . 3 dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I )
25 difss 4132 . . . . 5 ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I ))
26 dmss 5903 . . . . 5 (((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I )) → dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I )))
2725, 26ax-mp 5 . . . 4 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I ))
28 dmcoss 5971 . . . 4 dom (𝐹 ∘ (𝐺 ∖ I )) ⊆ dom (𝐺 ∖ I )
2927, 28sstri 3992 . . 3 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )
30 unss12 4183 . . 3 ((dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ) ∧ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )) → (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I )))
3124, 29, 30mp2an 691 . 2 (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
3210, 31eqsstri 4017 1 dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cdif 3946  cun 3947  cin 3948  wss 3949   I cid 5574  ccnv 5676  dom cdm 5677  ccom 5681  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689
This theorem is referenced by:  f1omvdco2  19316  symgsssg  19335  symgfisg  19336  symggen  19338  pmtrcnel  32250  pmtrcnel2  32251
  Copyright terms: Public domain W3C validator