MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvdco Structured version   Visualization version   GIF version

Theorem mvdco 19053
Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
mvdco dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))

Proof of Theorem mvdco
StepHypRef Expression
1 inundif 4412 . . . . . . . 8 ((𝐺 ∩ I ) ∪ (𝐺 ∖ I )) = 𝐺
21coeq2i 5769 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = (𝐹𝐺)
3 coundi 6151 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
42, 3eqtr3i 2768 . . . . . 6 (𝐹𝐺) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
54difeq1i 4053 . . . . 5 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I )
6 difundir 4214 . . . . 5 (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
75, 6eqtri 2766 . . . 4 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
87dmeqi 5813 . . 3 dom ((𝐹𝐺) ∖ I ) = dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
9 dmun 5819 . . 3 dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
108, 9eqtri 2766 . 2 dom ((𝐹𝐺) ∖ I ) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
11 inss2 4163 . . . . . 6 (𝐺 ∩ I ) ⊆ I
12 coss2 5765 . . . . . 6 ((𝐺 ∩ I ) ⊆ I → (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I ))
1311, 12ax-mp 5 . . . . 5 (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I )
14 cocnvcnv1 6161 . . . . . . 7 (𝐹 ∘ I ) = (𝐹 ∘ I )
15 relcnv 6012 . . . . . . . 8 Rel 𝐹
16 coi1 6166 . . . . . . . 8 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1715, 16ax-mp 5 . . . . . . 7 (𝐹 ∘ I ) = 𝐹
1814, 17eqtr3i 2768 . . . . . 6 (𝐹 ∘ I ) = 𝐹
19 cnvcnvss 6097 . . . . . 6 𝐹𝐹
2018, 19eqsstri 3955 . . . . 5 (𝐹 ∘ I ) ⊆ 𝐹
2113, 20sstri 3930 . . . 4 (𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹
22 ssdif 4074 . . . 4 ((𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹 → ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ))
23 dmss 5811 . . . 4 (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ) → dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ))
2421, 22, 23mp2b 10 . . 3 dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I )
25 difss 4066 . . . . 5 ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I ))
26 dmss 5811 . . . . 5 (((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I )) → dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I )))
2725, 26ax-mp 5 . . . 4 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I ))
28 dmcoss 5880 . . . 4 dom (𝐹 ∘ (𝐺 ∖ I )) ⊆ dom (𝐺 ∖ I )
2927, 28sstri 3930 . . 3 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )
30 unss12 4116 . . 3 ((dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ) ∧ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )) → (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I )))
3124, 29, 30mp2an 689 . 2 (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
3210, 31eqsstri 3955 1 dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  cun 3885  cin 3886  wss 3887   I cid 5488  ccnv 5588  dom cdm 5589  ccom 5593  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601
This theorem is referenced by:  f1omvdco2  19056  symgsssg  19075  symgfisg  19076  symggen  19078  pmtrcnel  31358  pmtrcnel2  31359
  Copyright terms: Public domain W3C validator