Proof of Theorem mvdco
Step | Hyp | Ref
| Expression |
1 | | inundif 4412 |
. . . . . . . 8
⊢ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I )) = 𝐺 |
2 | 1 | coeq2i 5769 |
. . . . . . 7
⊢ (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = (𝐹 ∘ 𝐺) |
3 | | coundi 6151 |
. . . . . . 7
⊢ (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) |
4 | 2, 3 | eqtr3i 2768 |
. . . . . 6
⊢ (𝐹 ∘ 𝐺) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) |
5 | 4 | difeq1i 4053 |
. . . . 5
⊢ ((𝐹 ∘ 𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I ) |
6 | | difundir 4214 |
. . . . 5
⊢ (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) |
7 | 5, 6 | eqtri 2766 |
. . . 4
⊢ ((𝐹 ∘ 𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) |
8 | 7 | dmeqi 5813 |
. . 3
⊢ dom
((𝐹 ∘ 𝐺) ∖ I ) = dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) |
9 | | dmun 5819 |
. . 3
⊢ dom
(((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪
((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) =
(dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪
dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I
)) |
10 | 8, 9 | eqtri 2766 |
. 2
⊢ dom
((𝐹 ∘ 𝐺) ∖ I ) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) |
11 | | inss2 4163 |
. . . . . 6
⊢ (𝐺 ∩ I ) ⊆
I |
12 | | coss2 5765 |
. . . . . 6
⊢ ((𝐺 ∩ I ) ⊆ I →
(𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I )) |
13 | 11, 12 | ax-mp 5 |
. . . . 5
⊢ (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I ) |
14 | | cocnvcnv1 6161 |
. . . . . . 7
⊢ (◡◡𝐹 ∘ I ) = (𝐹 ∘ I ) |
15 | | relcnv 6012 |
. . . . . . . 8
⊢ Rel ◡◡𝐹 |
16 | | coi1 6166 |
. . . . . . . 8
⊢ (Rel
◡◡𝐹 → (◡◡𝐹 ∘ I ) = ◡◡𝐹) |
17 | 15, 16 | ax-mp 5 |
. . . . . . 7
⊢ (◡◡𝐹 ∘ I ) = ◡◡𝐹 |
18 | 14, 17 | eqtr3i 2768 |
. . . . . 6
⊢ (𝐹 ∘ I ) = ◡◡𝐹 |
19 | | cnvcnvss 6097 |
. . . . . 6
⊢ ◡◡𝐹 ⊆ 𝐹 |
20 | 18, 19 | eqsstri 3955 |
. . . . 5
⊢ (𝐹 ∘ I ) ⊆ 𝐹 |
21 | 13, 20 | sstri 3930 |
. . . 4
⊢ (𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹 |
22 | | ssdif 4074 |
. . . 4
⊢ ((𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹 → ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I )) |
23 | | dmss 5811 |
. . . 4
⊢ (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ) → dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I )) |
24 | 21, 22, 23 | mp2b 10 |
. . 3
⊢ dom
((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆
dom (𝐹 ∖ I
) |
25 | | difss 4066 |
. . . . 5
⊢ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I )) |
26 | | dmss 5811 |
. . . . 5
⊢ (((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I )) → dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I ))) |
27 | 25, 26 | ax-mp 5 |
. . . 4
⊢ dom
((𝐹 ∘ (𝐺 ∖ I )) ∖ I )
⊆ dom (𝐹 ∘
(𝐺 ∖ I
)) |
28 | | dmcoss 5880 |
. . . 4
⊢ dom
(𝐹 ∘ (𝐺 ∖ I )) ⊆ dom (𝐺 ∖ I ) |
29 | 27, 28 | sstri 3930 |
. . 3
⊢ dom
((𝐹 ∘ (𝐺 ∖ I )) ∖ I )
⊆ dom (𝐺 ∖ I
) |
30 | | unss12 4116 |
. . 3
⊢ ((dom
((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆
dom (𝐹 ∖ I ) ∧
dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )
⊆ dom (𝐺 ∖ I ))
→ (dom ((𝐹 ∘
(𝐺 ∩ I )) ∖ I )
∪ dom ((𝐹 ∘
(𝐺 ∖ I )) ∖ I
)) ⊆ (dom (𝐹 ∖
I ) ∪ dom (𝐺 ∖ I
))) |
31 | 24, 29, 30 | mp2an 689 |
. 2
⊢ (dom
((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪
dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
⊆ (dom (𝐹 ∖ I )
∪ dom (𝐺 ∖ I
)) |
32 | 10, 31 | eqsstri 3955 |
1
⊢ dom
((𝐹 ∘ 𝐺) ∖ I ) ⊆ (dom
(𝐹 ∖ I ) ∪ dom
(𝐺 ∖ I
)) |