MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvdco Structured version   Visualization version   GIF version

Theorem mvdco 19463
Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
mvdco dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))

Proof of Theorem mvdco
StepHypRef Expression
1 inundif 4479 . . . . . . . 8 ((𝐺 ∩ I ) ∪ (𝐺 ∖ I )) = 𝐺
21coeq2i 5871 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = (𝐹𝐺)
3 coundi 6267 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
42, 3eqtr3i 2767 . . . . . 6 (𝐹𝐺) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
54difeq1i 4122 . . . . 5 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I )
6 difundir 4291 . . . . 5 (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
75, 6eqtri 2765 . . . 4 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
87dmeqi 5915 . . 3 dom ((𝐹𝐺) ∖ I ) = dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
9 dmun 5921 . . 3 dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
108, 9eqtri 2765 . 2 dom ((𝐹𝐺) ∖ I ) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
11 inss2 4238 . . . . . 6 (𝐺 ∩ I ) ⊆ I
12 coss2 5867 . . . . . 6 ((𝐺 ∩ I ) ⊆ I → (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I ))
1311, 12ax-mp 5 . . . . 5 (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I )
14 cocnvcnv1 6277 . . . . . . 7 (𝐹 ∘ I ) = (𝐹 ∘ I )
15 relcnv 6122 . . . . . . . 8 Rel 𝐹
16 coi1 6282 . . . . . . . 8 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1715, 16ax-mp 5 . . . . . . 7 (𝐹 ∘ I ) = 𝐹
1814, 17eqtr3i 2767 . . . . . 6 (𝐹 ∘ I ) = 𝐹
19 cnvcnvss 6214 . . . . . 6 𝐹𝐹
2018, 19eqsstri 4030 . . . . 5 (𝐹 ∘ I ) ⊆ 𝐹
2113, 20sstri 3993 . . . 4 (𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹
22 ssdif 4144 . . . 4 ((𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹 → ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ))
23 dmss 5913 . . . 4 (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ) → dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ))
2421, 22, 23mp2b 10 . . 3 dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I )
25 difss 4136 . . . . 5 ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I ))
26 dmss 5913 . . . . 5 (((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I )) → dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I )))
2725, 26ax-mp 5 . . . 4 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I ))
28 dmcoss 5985 . . . 4 dom (𝐹 ∘ (𝐺 ∖ I )) ⊆ dom (𝐺 ∖ I )
2927, 28sstri 3993 . . 3 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )
30 unss12 4188 . . 3 ((dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ) ∧ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )) → (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I )))
3124, 29, 30mp2an 692 . 2 (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
3210, 31eqsstri 4030 1 dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3948  cun 3949  cin 3950  wss 3951   I cid 5577  ccnv 5684  dom cdm 5685  ccom 5689  Rel wrel 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697
This theorem is referenced by:  f1omvdco2  19466  symgsssg  19485  symgfisg  19486  symggen  19488  pmtrcnel  33109  pmtrcnel2  33110
  Copyright terms: Public domain W3C validator