MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvdco Structured version   Visualization version   GIF version

Theorem mvdco 18968
Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
mvdco dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))

Proof of Theorem mvdco
StepHypRef Expression
1 inundif 4409 . . . . . . . 8 ((𝐺 ∩ I ) ∪ (𝐺 ∖ I )) = 𝐺
21coeq2i 5758 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = (𝐹𝐺)
3 coundi 6140 . . . . . . 7 (𝐹 ∘ ((𝐺 ∩ I ) ∪ (𝐺 ∖ I ))) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
42, 3eqtr3i 2768 . . . . . 6 (𝐹𝐺) = ((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I )))
54difeq1i 4049 . . . . 5 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I )
6 difundir 4211 . . . . 5 (((𝐹 ∘ (𝐺 ∩ I )) ∪ (𝐹 ∘ (𝐺 ∖ I ))) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
75, 6eqtri 2766 . . . 4 ((𝐹𝐺) ∖ I ) = (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
87dmeqi 5802 . . 3 dom ((𝐹𝐺) ∖ I ) = dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
9 dmun 5808 . . 3 dom (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
108, 9eqtri 2766 . 2 dom ((𝐹𝐺) ∖ I ) = (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ))
11 inss2 4160 . . . . . 6 (𝐺 ∩ I ) ⊆ I
12 coss2 5754 . . . . . 6 ((𝐺 ∩ I ) ⊆ I → (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I ))
1311, 12ax-mp 5 . . . . 5 (𝐹 ∘ (𝐺 ∩ I )) ⊆ (𝐹 ∘ I )
14 cocnvcnv1 6150 . . . . . . 7 (𝐹 ∘ I ) = (𝐹 ∘ I )
15 relcnv 6001 . . . . . . . 8 Rel 𝐹
16 coi1 6155 . . . . . . . 8 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1715, 16ax-mp 5 . . . . . . 7 (𝐹 ∘ I ) = 𝐹
1814, 17eqtr3i 2768 . . . . . 6 (𝐹 ∘ I ) = 𝐹
19 cnvcnvss 6086 . . . . . 6 𝐹𝐹
2018, 19eqsstri 3951 . . . . 5 (𝐹 ∘ I ) ⊆ 𝐹
2113, 20sstri 3926 . . . 4 (𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹
22 ssdif 4070 . . . 4 ((𝐹 ∘ (𝐺 ∩ I )) ⊆ 𝐹 → ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ))
23 dmss 5800 . . . 4 (((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ (𝐹 ∖ I ) → dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ))
2421, 22, 23mp2b 10 . . 3 dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I )
25 difss 4062 . . . . 5 ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I ))
26 dmss 5800 . . . . 5 (((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ (𝐹 ∘ (𝐺 ∖ I )) → dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I )))
2725, 26ax-mp 5 . . . 4 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐹 ∘ (𝐺 ∖ I ))
28 dmcoss 5869 . . . 4 dom (𝐹 ∘ (𝐺 ∖ I )) ⊆ dom (𝐺 ∖ I )
2927, 28sstri 3926 . . 3 dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )
30 unss12 4112 . . 3 ((dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ⊆ dom (𝐹 ∖ I ) ∧ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I ) ⊆ dom (𝐺 ∖ I )) → (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I )))
3124, 29, 30mp2an 688 . 2 (dom ((𝐹 ∘ (𝐺 ∩ I )) ∖ I ) ∪ dom ((𝐹 ∘ (𝐺 ∖ I )) ∖ I )) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
3210, 31eqsstri 3951 1 dom ((𝐹𝐺) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∪ dom (𝐺 ∖ I ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3880  cun 3881  cin 3882  wss 3883   I cid 5479  ccnv 5579  dom cdm 5580  ccom 5584  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592
This theorem is referenced by:  f1omvdco2  18971  symgsssg  18990  symgfisg  18991  symggen  18993  pmtrcnel  31260  pmtrcnel2  31261
  Copyright terms: Public domain W3C validator