![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvct | Structured version Visualization version GIF version |
Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
cnvct | ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6125 | . . . 4 ⊢ Rel ◡𝐴 | |
2 | ctex 9003 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | cnvexg 7947 | . . . . 5 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ≼ ω → ◡𝐴 ∈ V) |
5 | cnven 9072 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
6 | 1, 4, 5 | sylancr 587 | . . 3 ⊢ (𝐴 ≼ ω → ◡𝐴 ≈ ◡◡𝐴) |
7 | cnvcnvss 6216 | . . . 4 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
8 | ssdomg 9039 | . . . 4 ⊢ (𝐴 ∈ V → (◡◡𝐴 ⊆ 𝐴 → ◡◡𝐴 ≼ 𝐴)) | |
9 | 2, 7, 8 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → ◡◡𝐴 ≼ 𝐴) |
10 | endomtr 9051 | . . 3 ⊢ ((◡𝐴 ≈ ◡◡𝐴 ∧ ◡◡𝐴 ≼ 𝐴) → ◡𝐴 ≼ 𝐴) | |
11 | 6, 9, 10 | syl2anc 584 | . 2 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ 𝐴) |
12 | domtr 9046 | . 2 ⊢ ((◡𝐴 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ◡𝐴 ≼ ω) | |
13 | 11, 12 | mpancom 688 | 1 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 class class class wbr 5148 ◡ccnv 5688 Rel wrel 5694 ωcom 7887 ≈ cen 8981 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-1st 8013 df-2nd 8014 df-en 8985 df-dom 8986 |
This theorem is referenced by: rnct 10563 |
Copyright terms: Public domain | W3C validator |