MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvct Structured version   Visualization version   GIF version

Theorem cnvct 9058
Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
cnvct (𝐴 ≼ ω → 𝐴 ≼ ω)

Proof of Theorem cnvct
StepHypRef Expression
1 relcnv 6108 . . . 4 Rel 𝐴
2 ctex 8983 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
3 cnvexg 7932 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
42, 3syl 17 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
5 cnven 9057 . . . 4 ((Rel 𝐴𝐴 ∈ V) → 𝐴𝐴)
61, 4, 5sylancr 586 . . 3 (𝐴 ≼ ω → 𝐴𝐴)
7 cnvcnvss 6198 . . . 4 𝐴𝐴
8 ssdomg 9020 . . . 4 (𝐴 ∈ V → (𝐴𝐴𝐴𝐴))
92, 7, 8mpisyl 21 . . 3 (𝐴 ≼ ω → 𝐴𝐴)
10 endomtr 9032 . . 3 ((𝐴𝐴𝐴𝐴) → 𝐴𝐴)
116, 9, 10syl2anc 583 . 2 (𝐴 ≼ ω → 𝐴𝐴)
12 domtr 9027 . 2 ((𝐴𝐴𝐴 ≼ ω) → 𝐴 ≼ ω)
1311, 12mpancom 687 1 (𝐴 ≼ ω → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  Vcvv 3471  wss 3947   class class class wbr 5148  ccnv 5677  Rel wrel 5683  ωcom 7870  cen 8960  cdom 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-1st 7993  df-2nd 7994  df-en 8964  df-dom 8965
This theorem is referenced by:  rnct  10548
  Copyright terms: Public domain W3C validator