MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvct Structured version   Visualization version   GIF version

Theorem cnvct 9048
Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
cnvct (𝐴 ≼ ω → 𝐴 ≼ ω)

Proof of Theorem cnvct
StepHypRef Expression
1 relcnv 6091 . . . 4 Rel 𝐴
2 ctex 8978 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
3 cnvexg 7920 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
42, 3syl 17 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
5 cnven 9047 . . . 4 ((Rel 𝐴𝐴 ∈ V) → 𝐴𝐴)
61, 4, 5sylancr 587 . . 3 (𝐴 ≼ ω → 𝐴𝐴)
7 cnvcnvss 6183 . . . 4 𝐴𝐴
8 ssdomg 9014 . . . 4 (𝐴 ∈ V → (𝐴𝐴𝐴𝐴))
92, 7, 8mpisyl 21 . . 3 (𝐴 ≼ ω → 𝐴𝐴)
10 endomtr 9026 . . 3 ((𝐴𝐴𝐴𝐴) → 𝐴𝐴)
116, 9, 10syl2anc 584 . 2 (𝐴 ≼ ω → 𝐴𝐴)
12 domtr 9021 . 2 ((𝐴𝐴𝐴 ≼ ω) → 𝐴 ≼ ω)
1311, 12mpancom 688 1 (𝐴 ≼ ω → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459  wss 3926   class class class wbr 5119  ccnv 5653  Rel wrel 5659  ωcom 7861  cen 8956  cdom 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1st 7988  df-2nd 7989  df-en 8960  df-dom 8961
This theorem is referenced by:  rnct  10539
  Copyright terms: Public domain W3C validator