| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvct | Structured version Visualization version GIF version | ||
| Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| cnvct | ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6078 | . . . 4 ⊢ Rel ◡𝐴 | |
| 2 | ctex 8938 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 3 | cnvexg 7903 | . . . . 5 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ≼ ω → ◡𝐴 ∈ V) |
| 5 | cnven 9007 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
| 6 | 1, 4, 5 | sylancr 587 | . . 3 ⊢ (𝐴 ≼ ω → ◡𝐴 ≈ ◡◡𝐴) |
| 7 | cnvcnvss 6170 | . . . 4 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 8 | ssdomg 8974 | . . . 4 ⊢ (𝐴 ∈ V → (◡◡𝐴 ⊆ 𝐴 → ◡◡𝐴 ≼ 𝐴)) | |
| 9 | 2, 7, 8 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → ◡◡𝐴 ≼ 𝐴) |
| 10 | endomtr 8986 | . . 3 ⊢ ((◡𝐴 ≈ ◡◡𝐴 ∧ ◡◡𝐴 ≼ 𝐴) → ◡𝐴 ≼ 𝐴) | |
| 11 | 6, 9, 10 | syl2anc 584 | . 2 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ 𝐴) |
| 12 | domtr 8981 | . 2 ⊢ ((◡𝐴 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ◡𝐴 ≼ ω) | |
| 13 | 11, 12 | mpancom 688 | 1 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ◡ccnv 5640 Rel wrel 5646 ωcom 7845 ≈ cen 8918 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1st 7971 df-2nd 7972 df-en 8922 df-dom 8923 |
| This theorem is referenced by: rnct 10485 |
| Copyright terms: Public domain | W3C validator |