MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvct Structured version   Visualization version   GIF version

Theorem cnvct 8966
Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
cnvct (𝐴 ≼ ω → 𝐴 ≼ ω)

Proof of Theorem cnvct
StepHypRef Expression
1 relcnv 6059 . . . 4 Rel 𝐴
2 ctex 8896 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
3 cnvexg 7864 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
42, 3syl 17 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
5 cnven 8965 . . . 4 ((Rel 𝐴𝐴 ∈ V) → 𝐴𝐴)
61, 4, 5sylancr 587 . . 3 (𝐴 ≼ ω → 𝐴𝐴)
7 cnvcnvss 6147 . . . 4 𝐴𝐴
8 ssdomg 8932 . . . 4 (𝐴 ∈ V → (𝐴𝐴𝐴𝐴))
92, 7, 8mpisyl 21 . . 3 (𝐴 ≼ ω → 𝐴𝐴)
10 endomtr 8944 . . 3 ((𝐴𝐴𝐴𝐴) → 𝐴𝐴)
116, 9, 10syl2anc 584 . 2 (𝐴 ≼ ω → 𝐴𝐴)
12 domtr 8939 . 2 ((𝐴𝐴𝐴 ≼ ω) → 𝐴 ≼ ω)
1311, 12mpancom 688 1 (𝐴 ≼ ω → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3438  wss 3905   class class class wbr 5095  ccnv 5622  Rel wrel 5628  ωcom 7806  cen 8876  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1st 7931  df-2nd 7932  df-en 8880  df-dom 8881
This theorem is referenced by:  rnct  10438
  Copyright terms: Public domain W3C validator