Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvct | Structured version Visualization version GIF version |
Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
Ref | Expression |
---|---|
cnvct | ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6029 | . . . 4 ⊢ Rel ◡𝐴 | |
2 | ctex 8801 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | cnvexg 7816 | . . . . 5 ⊢ (𝐴 ∈ V → ◡𝐴 ∈ V) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ≼ ω → ◡𝐴 ∈ V) |
5 | cnven 8875 | . . . 4 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
6 | 1, 4, 5 | sylancr 587 | . . 3 ⊢ (𝐴 ≼ ω → ◡𝐴 ≈ ◡◡𝐴) |
7 | cnvcnvss 6119 | . . . 4 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
8 | ssdomg 8838 | . . . 4 ⊢ (𝐴 ∈ V → (◡◡𝐴 ⊆ 𝐴 → ◡◡𝐴 ≼ 𝐴)) | |
9 | 2, 7, 8 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → ◡◡𝐴 ≼ 𝐴) |
10 | endomtr 8850 | . . 3 ⊢ ((◡𝐴 ≈ ◡◡𝐴 ∧ ◡◡𝐴 ≼ 𝐴) → ◡𝐴 ≼ 𝐴) | |
11 | 6, 9, 10 | syl2anc 584 | . 2 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ 𝐴) |
12 | domtr 8845 | . 2 ⊢ ((◡𝐴 ≼ 𝐴 ∧ 𝐴 ≼ ω) → ◡𝐴 ≼ ω) | |
13 | 11, 12 | mpancom 685 | 1 ⊢ (𝐴 ≼ ω → ◡𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3897 class class class wbr 5087 ◡ccnv 5606 Rel wrel 5612 ωcom 7757 ≈ cen 8778 ≼ cdom 8779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-1st 7876 df-2nd 7877 df-en 8782 df-dom 8783 |
This theorem is referenced by: rnct 10354 |
Copyright terms: Public domain | W3C validator |