| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvfiALT | Structured version Visualization version GIF version | ||
| Description: Shorter proof of cnvfi 9184 using ax-pow 5332. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnvfiALT | ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnvss 6180 | . . 3 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 2 | ssfi 9181 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ◡◡𝐴 ⊆ 𝐴) → ◡◡𝐴 ∈ Fin) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ Fin → ◡◡𝐴 ∈ Fin) |
| 4 | relcnv 6088 | . . 3 ⊢ Rel ◡𝐴 | |
| 5 | cnvexg 7914 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ V) | |
| 6 | cnven 9041 | . . 3 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
| 7 | 4, 5, 6 | sylancr 587 | . 2 ⊢ (𝐴 ∈ Fin → ◡𝐴 ≈ ◡◡𝐴) |
| 8 | enfii 9194 | . 2 ⊢ ((◡◡𝐴 ∈ Fin ∧ ◡𝐴 ≈ ◡◡𝐴) → ◡𝐴 ∈ Fin) | |
| 9 | 3, 7, 8 | syl2anc 584 | 1 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3457 ⊆ wss 3924 class class class wbr 5116 ◡ccnv 5650 Rel wrel 5656 ≈ cen 8950 Fincfn 8953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-om 7856 df-1st 7982 df-2nd 7983 df-1o 8474 df-en 8954 df-fin 8957 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |