MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structcnvcnv Structured version   Visualization version   GIF version

Theorem structcnvcnv 17200
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
structcnvcnv (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))

Proof of Theorem structcnvcnv
StepHypRef Expression
1 0nelxp 5734 . . . . . 6 ¬ ∅ ∈ (V × V)
2 cnvcnv 6223 . . . . . . . 8 𝐹 = (𝐹 ∩ (V × V))
3 inss2 4259 . . . . . . . 8 (𝐹 ∩ (V × V)) ⊆ (V × V)
42, 3eqsstri 4043 . . . . . . 7 𝐹 ⊆ (V × V)
54sseli 4004 . . . . . 6 (∅ ∈ 𝐹 → ∅ ∈ (V × V))
61, 5mto 197 . . . . 5 ¬ ∅ ∈ 𝐹
7 disjsn 4736 . . . . 5 ((𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐹)
86, 7mpbir 231 . . . 4 (𝐹 ∩ {∅}) = ∅
9 cnvcnvss 6225 . . . . 5 𝐹𝐹
10 reldisj 4476 . . . . 5 (𝐹𝐹 → ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅})))
119, 10ax-mp 5 . . . 4 ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅}))
128, 11mpbi 230 . . 3 𝐹 ⊆ (𝐹 ∖ {∅})
1312a1i 11 . 2 (𝐹 Struct 𝑋𝐹 ⊆ (𝐹 ∖ {∅}))
14 structn0fun 17198 . . . . 5 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
15 funrel 6595 . . . . 5 (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅}))
1614, 15syl 17 . . . 4 (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅}))
17 dfrel2 6220 . . . 4 (Rel (𝐹 ∖ {∅}) ↔ (𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
1816, 17sylib 218 . . 3 (𝐹 Struct 𝑋(𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
19 difss 4159 . . . 4 (𝐹 ∖ {∅}) ⊆ 𝐹
20 cnvss 5897 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
21 cnvss 5897 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
2219, 20, 21mp2b 10 . . 3 (𝐹 ∖ {∅}) ⊆ 𝐹
2318, 22eqsstrrdi 4064 . 2 (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ 𝐹)
2413, 23eqssd 4026 1 (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166   × cxp 5698  ccnv 5699  Rel wrel 5705  Fun wfun 6567   Struct cstr 17193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194
This theorem is referenced by:  structfung  17201  ebtwntg  29015  ecgrtg  29016  elntg  29017
  Copyright terms: Public domain W3C validator