MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  structcnvcnv Structured version   Visualization version   GIF version

Theorem structcnvcnv 17119
Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
structcnvcnv (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))

Proof of Theorem structcnvcnv
StepHypRef Expression
1 0nelxp 5706 . . . . . 6 ¬ ∅ ∈ (V × V)
2 cnvcnv 6191 . . . . . . . 8 𝐹 = (𝐹 ∩ (V × V))
3 inss2 4224 . . . . . . . 8 (𝐹 ∩ (V × V)) ⊆ (V × V)
42, 3eqsstri 4007 . . . . . . 7 𝐹 ⊆ (V × V)
54sseli 3968 . . . . . 6 (∅ ∈ 𝐹 → ∅ ∈ (V × V))
61, 5mto 196 . . . . 5 ¬ ∅ ∈ 𝐹
7 disjsn 4711 . . . . 5 ((𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐹)
86, 7mpbir 230 . . . 4 (𝐹 ∩ {∅}) = ∅
9 cnvcnvss 6193 . . . . 5 𝐹𝐹
10 reldisj 4447 . . . . 5 (𝐹𝐹 → ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅})))
119, 10ax-mp 5 . . . 4 ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅}))
128, 11mpbi 229 . . 3 𝐹 ⊆ (𝐹 ∖ {∅})
1312a1i 11 . 2 (𝐹 Struct 𝑋𝐹 ⊆ (𝐹 ∖ {∅}))
14 structn0fun 17117 . . . . 5 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
15 funrel 6564 . . . . 5 (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅}))
1614, 15syl 17 . . . 4 (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅}))
17 dfrel2 6188 . . . 4 (Rel (𝐹 ∖ {∅}) ↔ (𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
1816, 17sylib 217 . . 3 (𝐹 Struct 𝑋(𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
19 difss 4124 . . . 4 (𝐹 ∖ {∅}) ⊆ 𝐹
20 cnvss 5869 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
21 cnvss 5869 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
2219, 20, 21mp2b 10 . . 3 (𝐹 ∖ {∅}) ⊆ 𝐹
2318, 22eqsstrrdi 4028 . 2 (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ 𝐹)
2413, 23eqssd 3990 1 (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3463  cdif 3937  cin 3939  wss 3940  c0 4318  {csn 4624   class class class wbr 5143   × cxp 5670  ccnv 5671  Rel wrel 5677  Fun wfun 6536   Struct cstr 17112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-struct 17113
This theorem is referenced by:  structfung  17120  ebtwntg  28835  ecgrtg  28836  elntg  28837
  Copyright terms: Public domain W3C validator