Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  structcnvcnv Structured version   Visualization version   GIF version

Theorem structcnvcnv 16509
 Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
structcnvcnv (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))

Proof of Theorem structcnvcnv
StepHypRef Expression
1 0nelxp 5557 . . . . . 6 ¬ ∅ ∈ (V × V)
2 cnvcnv 6020 . . . . . . . 8 𝐹 = (𝐹 ∩ (V × V))
3 inss2 4159 . . . . . . . 8 (𝐹 ∩ (V × V)) ⊆ (V × V)
42, 3eqsstri 3951 . . . . . . 7 𝐹 ⊆ (V × V)
54sseli 3913 . . . . . 6 (∅ ∈ 𝐹 → ∅ ∈ (V × V))
61, 5mto 200 . . . . 5 ¬ ∅ ∈ 𝐹
7 disjsn 4610 . . . . 5 ((𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝐹)
86, 7mpbir 234 . . . 4 (𝐹 ∩ {∅}) = ∅
9 cnvcnvss 6022 . . . . 5 𝐹𝐹
10 reldisj 4362 . . . . 5 (𝐹𝐹 → ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅})))
119, 10ax-mp 5 . . . 4 ((𝐹 ∩ {∅}) = ∅ ↔ 𝐹 ⊆ (𝐹 ∖ {∅}))
128, 11mpbi 233 . . 3 𝐹 ⊆ (𝐹 ∖ {∅})
1312a1i 11 . 2 (𝐹 Struct 𝑋𝐹 ⊆ (𝐹 ∖ {∅}))
14 structn0fun 16507 . . . . 5 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
15 funrel 6349 . . . . 5 (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅}))
1614, 15syl 17 . . . 4 (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅}))
17 dfrel2 6017 . . . 4 (Rel (𝐹 ∖ {∅}) ↔ (𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
1816, 17sylib 221 . . 3 (𝐹 Struct 𝑋(𝐹 ∖ {∅}) = (𝐹 ∖ {∅}))
19 difss 4062 . . . 4 (𝐹 ∖ {∅}) ⊆ 𝐹
20 cnvss 5711 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
21 cnvss 5711 . . . 4 ((𝐹 ∖ {∅}) ⊆ 𝐹(𝐹 ∖ {∅}) ⊆ 𝐹)
2219, 20, 21mp2b 10 . . 3 (𝐹 ∖ {∅}) ⊆ 𝐹
2318, 22eqsstrrdi 3972 . 2 (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ 𝐹)
2413, 23eqssd 3934 1 (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  Vcvv 3442   ∖ cdif 3880   ∩ cin 3882   ⊆ wss 3883  ∅c0 4246  {csn 4528   class class class wbr 5034   × cxp 5521  ◡ccnv 5522  Rel wrel 5528  Fun wfun 6326   Struct cstr 16491 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-struct 16497 This theorem is referenced by:  structfung  16510  ebtwntg  26820  ecgrtg  26821  elntg  26822
 Copyright terms: Public domain W3C validator