| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > structcnvcnv | Structured version Visualization version GIF version | ||
| Description: Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| structcnvcnv | ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5675 | . . . . . 6 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | cnvcnv 6168 | . . . . . . . 8 ⊢ ◡◡𝐹 = (𝐹 ∩ (V × V)) | |
| 3 | inss2 4204 | . . . . . . . 8 ⊢ (𝐹 ∩ (V × V)) ⊆ (V × V) | |
| 4 | 2, 3 | eqsstri 3996 | . . . . . . 7 ⊢ ◡◡𝐹 ⊆ (V × V) |
| 5 | 4 | sseli 3945 | . . . . . 6 ⊢ (∅ ∈ ◡◡𝐹 → ∅ ∈ (V × V)) |
| 6 | 1, 5 | mto 197 | . . . . 5 ⊢ ¬ ∅ ∈ ◡◡𝐹 |
| 7 | disjsn 4678 | . . . . 5 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ◡◡𝐹) | |
| 8 | 6, 7 | mpbir 231 | . . . 4 ⊢ (◡◡𝐹 ∩ {∅}) = ∅ |
| 9 | cnvcnvss 6170 | . . . . 5 ⊢ ◡◡𝐹 ⊆ 𝐹 | |
| 10 | reldisj 4419 | . . . . 5 ⊢ (◡◡𝐹 ⊆ 𝐹 → ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}))) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ((◡◡𝐹 ∩ {∅}) = ∅ ↔ ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
| 12 | 8, 11 | mpbi 230 | . . 3 ⊢ ◡◡𝐹 ⊆ (𝐹 ∖ {∅}) |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 ⊆ (𝐹 ∖ {∅})) |
| 14 | structn0fun 17128 | . . . . 5 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | |
| 15 | funrel 6536 | . . . . 5 ⊢ (Fun (𝐹 ∖ {∅}) → Rel (𝐹 ∖ {∅})) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐹 Struct 𝑋 → Rel (𝐹 ∖ {∅})) |
| 17 | dfrel2 6165 | . . . 4 ⊢ (Rel (𝐹 ∖ {∅}) ↔ ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) | |
| 18 | 16, 17 | sylib 218 | . . 3 ⊢ (𝐹 Struct 𝑋 → ◡◡(𝐹 ∖ {∅}) = (𝐹 ∖ {∅})) |
| 19 | difss 4102 | . . . 4 ⊢ (𝐹 ∖ {∅}) ⊆ 𝐹 | |
| 20 | cnvss 5839 | . . . 4 ⊢ ((𝐹 ∖ {∅}) ⊆ 𝐹 → ◡(𝐹 ∖ {∅}) ⊆ ◡𝐹) | |
| 21 | cnvss 5839 | . . . 4 ⊢ (◡(𝐹 ∖ {∅}) ⊆ ◡𝐹 → ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹) | |
| 22 | 19, 20, 21 | mp2b 10 | . . 3 ⊢ ◡◡(𝐹 ∖ {∅}) ⊆ ◡◡𝐹 |
| 23 | 18, 22 | eqsstrrdi 3995 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝐹 ∖ {∅}) ⊆ ◡◡𝐹) |
| 24 | 13, 23 | eqssd 3967 | 1 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 class class class wbr 5110 × cxp 5639 ◡ccnv 5640 Rel wrel 5646 Fun wfun 6508 Struct cstr 17123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 |
| This theorem is referenced by: structfung 17131 ebtwntg 28916 ecgrtg 28917 elntg 28918 |
| Copyright terms: Public domain | W3C validator |