Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cofunex2g | Structured version Visualization version GIF version |
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7640 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
2 | cofunexg 7660 | . . . 4 ⊢ ((Fun ◡𝐵 ∧ ◡𝐴 ∈ V) → (◡𝐵 ∘ ◡𝐴) ∈ V) | |
3 | 1, 2 | sylan2 595 | . . 3 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (◡𝐵 ∘ ◡𝐴) ∈ V) |
4 | cnvco 5731 | . . . . 5 ⊢ ◡(◡𝐵 ∘ ◡𝐴) = (◡◡𝐴 ∘ ◡◡𝐵) | |
5 | cocnvcnv2 6093 | . . . . 5 ⊢ (◡◡𝐴 ∘ ◡◡𝐵) = (◡◡𝐴 ∘ 𝐵) | |
6 | cocnvcnv1 6092 | . . . . 5 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | |
7 | 4, 5, 6 | 3eqtrri 2786 | . . . 4 ⊢ (𝐴 ∘ 𝐵) = ◡(◡𝐵 ∘ ◡𝐴) |
8 | cnvexg 7640 | . . . 4 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → ◡(◡𝐵 ∘ ◡𝐴) ∈ V) | |
9 | 7, 8 | eqeltrid 2856 | . . 3 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → (𝐴 ∘ 𝐵) ∈ V) |
10 | 3, 9 | syl 17 | . 2 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∘ 𝐵) ∈ V) |
11 | 10 | ancoms 462 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 Vcvv 3409 ◡ccnv 5527 ∘ ccom 5532 Fun wfun 6334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 |
This theorem is referenced by: fsuppco 8912 |
Copyright terms: Public domain | W3C validator |