![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofunex2g | Structured version Visualization version GIF version |
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7947 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
2 | cofunexg 7972 | . . . 4 ⊢ ((Fun ◡𝐵 ∧ ◡𝐴 ∈ V) → (◡𝐵 ∘ ◡𝐴) ∈ V) | |
3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (◡𝐵 ∘ ◡𝐴) ∈ V) |
4 | cnvco 5899 | . . . . 5 ⊢ ◡(◡𝐵 ∘ ◡𝐴) = (◡◡𝐴 ∘ ◡◡𝐵) | |
5 | cocnvcnv2 6280 | . . . . 5 ⊢ (◡◡𝐴 ∘ ◡◡𝐵) = (◡◡𝐴 ∘ 𝐵) | |
6 | cocnvcnv1 6279 | . . . . 5 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | |
7 | 4, 5, 6 | 3eqtrri 2768 | . . . 4 ⊢ (𝐴 ∘ 𝐵) = ◡(◡𝐵 ∘ ◡𝐴) |
8 | cnvexg 7947 | . . . 4 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → ◡(◡𝐵 ∘ ◡𝐴) ∈ V) | |
9 | 7, 8 | eqeltrid 2843 | . . 3 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → (𝐴 ∘ 𝐵) ∈ V) |
10 | 3, 9 | syl 17 | . 2 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∘ 𝐵) ∈ V) |
11 | 10 | ancoms 458 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ◡ccnv 5688 ∘ ccom 5693 Fun wfun 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 |
This theorem is referenced by: fsuppco 9440 |
Copyright terms: Public domain | W3C validator |