Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cores2 | Structured version Visualization version GIF version |
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
Ref | Expression |
---|---|
cores2 | ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5793 | . . . . . 6 ⊢ dom 𝐴 = ran ◡𝐴 | |
2 | 1 | sseq1i 3945 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐶 ↔ ran ◡𝐴 ⊆ 𝐶) |
3 | cores 6142 | . . . . 5 ⊢ (ran ◡𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) | |
4 | 2, 3 | sylbi 216 | . . . 4 ⊢ (dom 𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) |
5 | cnvco 5783 | . . . . 5 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
6 | cocnvcnv1 6150 | . . . . 5 ⊢ (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
7 | 5, 6 | eqtri 2766 | . . . 4 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) |
8 | cnvco 5783 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
9 | 4, 7, 8 | 3eqtr4g 2804 | . . 3 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡(𝐴 ∘ 𝐵)) |
10 | 9 | cnveqd 5773 | . 2 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡◡(𝐴 ∘ 𝐵)) |
11 | relco 6137 | . . 3 ⊢ Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) | |
12 | dfrel2 6081 | . . 3 ⊢ (Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) ↔ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶))) | |
13 | 11, 12 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) |
14 | relco 6137 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
15 | dfrel2 6081 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) ↔ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
16 | 14, 15 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
17 | 10, 13, 16 | 3eqtr3g 2802 | 1 ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 |
This theorem is referenced by: fcoi1 6632 ofco2 21508 cycpmconjvlem 31310 |
Copyright terms: Public domain | W3C validator |