MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores2 Structured version   Visualization version   GIF version

Theorem cores2 6212
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
cores2 (dom 𝐴𝐶 → (𝐴(𝐵𝐶)) = (𝐴𝐵))

Proof of Theorem cores2
StepHypRef Expression
1 dfdm4 5839 . . . . . 6 dom 𝐴 = ran 𝐴
21sseq1i 3959 . . . . 5 (dom 𝐴𝐶 ↔ ran 𝐴𝐶)
3 cores 6201 . . . . 5 (ran 𝐴𝐶 → ((𝐵𝐶) ∘ 𝐴) = (𝐵𝐴))
42, 3sylbi 217 . . . 4 (dom 𝐴𝐶 → ((𝐵𝐶) ∘ 𝐴) = (𝐵𝐴))
5 cnvco 5829 . . . . 5 (𝐴(𝐵𝐶)) = ((𝐵𝐶) ∘ 𝐴)
6 cocnvcnv1 6210 . . . . 5 ((𝐵𝐶) ∘ 𝐴) = ((𝐵𝐶) ∘ 𝐴)
75, 6eqtri 2756 . . . 4 (𝐴(𝐵𝐶)) = ((𝐵𝐶) ∘ 𝐴)
8 cnvco 5829 . . . 4 (𝐴𝐵) = (𝐵𝐴)
94, 7, 83eqtr4g 2793 . . 3 (dom 𝐴𝐶(𝐴(𝐵𝐶)) = (𝐴𝐵))
109cnveqd 5819 . 2 (dom 𝐴𝐶(𝐴(𝐵𝐶)) = (𝐴𝐵))
11 relco 6061 . . 3 Rel (𝐴(𝐵𝐶))
12 dfrel2 6141 . . 3 (Rel (𝐴(𝐵𝐶)) ↔ (𝐴(𝐵𝐶)) = (𝐴(𝐵𝐶)))
1311, 12mpbi 230 . 2 (𝐴(𝐵𝐶)) = (𝐴(𝐵𝐶))
14 relco 6061 . . 3 Rel (𝐴𝐵)
15 dfrel2 6141 . . 3 (Rel (𝐴𝐵) ↔ (𝐴𝐵) = (𝐴𝐵))
1614, 15mpbi 230 . 2 (𝐴𝐵) = (𝐴𝐵)
1710, 13, 163eqtr3g 2791 1 (dom 𝐴𝐶 → (𝐴(𝐵𝐶)) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3898  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  ccom 5623  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631
This theorem is referenced by:  fcoi1  6702  ofco2  22367  cycpmconjvlem  33117
  Copyright terms: Public domain W3C validator