MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores2 Structured version   Visualization version   GIF version

Theorem cores2 6255
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
cores2 (dom 𝐴𝐶 → (𝐴(𝐵𝐶)) = (𝐴𝐵))

Proof of Theorem cores2
StepHypRef Expression
1 dfdm4 5893 . . . . . 6 dom 𝐴 = ran 𝐴
21sseq1i 4009 . . . . 5 (dom 𝐴𝐶 ↔ ran 𝐴𝐶)
3 cores 6245 . . . . 5 (ran 𝐴𝐶 → ((𝐵𝐶) ∘ 𝐴) = (𝐵𝐴))
42, 3sylbi 216 . . . 4 (dom 𝐴𝐶 → ((𝐵𝐶) ∘ 𝐴) = (𝐵𝐴))
5 cnvco 5883 . . . . 5 (𝐴(𝐵𝐶)) = ((𝐵𝐶) ∘ 𝐴)
6 cocnvcnv1 6253 . . . . 5 ((𝐵𝐶) ∘ 𝐴) = ((𝐵𝐶) ∘ 𝐴)
75, 6eqtri 2760 . . . 4 (𝐴(𝐵𝐶)) = ((𝐵𝐶) ∘ 𝐴)
8 cnvco 5883 . . . 4 (𝐴𝐵) = (𝐵𝐴)
94, 7, 83eqtr4g 2797 . . 3 (dom 𝐴𝐶(𝐴(𝐵𝐶)) = (𝐴𝐵))
109cnveqd 5873 . 2 (dom 𝐴𝐶(𝐴(𝐵𝐶)) = (𝐴𝐵))
11 relco 6104 . . 3 Rel (𝐴(𝐵𝐶))
12 dfrel2 6185 . . 3 (Rel (𝐴(𝐵𝐶)) ↔ (𝐴(𝐵𝐶)) = (𝐴(𝐵𝐶)))
1311, 12mpbi 229 . 2 (𝐴(𝐵𝐶)) = (𝐴(𝐵𝐶))
14 relco 6104 . . 3 Rel (𝐴𝐵)
15 dfrel2 6185 . . 3 (Rel (𝐴𝐵) ↔ (𝐴𝐵) = (𝐴𝐵))
1614, 15mpbi 229 . 2 (𝐴𝐵) = (𝐴𝐵)
1710, 13, 163eqtr3g 2795 1 (dom 𝐴𝐶 → (𝐴(𝐵𝐶)) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3947  ccnv 5674  dom cdm 5675  ran crn 5676  cres 5677  ccom 5679  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687
This theorem is referenced by:  fcoi1  6762  ofco2  21944  cycpmconjvlem  32287
  Copyright terms: Public domain W3C validator