| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cores2 | Structured version Visualization version GIF version | ||
| Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
| Ref | Expression |
|---|---|
| cores2 | ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 5839 | . . . . . 6 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 2 | 1 | sseq1i 3959 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐶 ↔ ran ◡𝐴 ⊆ 𝐶) |
| 3 | cores 6201 | . . . . 5 ⊢ (ran ◡𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) | |
| 4 | 2, 3 | sylbi 217 | . . . 4 ⊢ (dom 𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) |
| 5 | cnvco 5829 | . . . . 5 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
| 6 | cocnvcnv1 6210 | . . . . 5 ⊢ (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
| 7 | 5, 6 | eqtri 2756 | . . . 4 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) |
| 8 | cnvco 5829 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 9 | 4, 7, 8 | 3eqtr4g 2793 | . . 3 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡(𝐴 ∘ 𝐵)) |
| 10 | 9 | cnveqd 5819 | . 2 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡◡(𝐴 ∘ 𝐵)) |
| 11 | relco 6061 | . . 3 ⊢ Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) | |
| 12 | dfrel2 6141 | . . 3 ⊢ (Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) ↔ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶))) | |
| 13 | 11, 12 | mpbi 230 | . 2 ⊢ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) |
| 14 | relco 6061 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 15 | dfrel2 6141 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) ↔ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
| 16 | 14, 15 | mpbi 230 | . 2 ⊢ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
| 17 | 10, 13, 16 | 3eqtr3g 2791 | 1 ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3898 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ↾ cres 5621 ∘ ccom 5623 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 |
| This theorem is referenced by: fcoi1 6702 ofco2 22367 cycpmconjvlem 33117 |
| Copyright terms: Public domain | W3C validator |