MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores2 Structured version   Visualization version   GIF version

Theorem cores2 6235
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
cores2 (dom 𝐴𝐶 → (𝐴(𝐵𝐶)) = (𝐴𝐵))

Proof of Theorem cores2
StepHypRef Expression
1 dfdm4 5862 . . . . . 6 dom 𝐴 = ran 𝐴
21sseq1i 3978 . . . . 5 (dom 𝐴𝐶 ↔ ran 𝐴𝐶)
3 cores 6225 . . . . 5 (ran 𝐴𝐶 → ((𝐵𝐶) ∘ 𝐴) = (𝐵𝐴))
42, 3sylbi 217 . . . 4 (dom 𝐴𝐶 → ((𝐵𝐶) ∘ 𝐴) = (𝐵𝐴))
5 cnvco 5852 . . . . 5 (𝐴(𝐵𝐶)) = ((𝐵𝐶) ∘ 𝐴)
6 cocnvcnv1 6233 . . . . 5 ((𝐵𝐶) ∘ 𝐴) = ((𝐵𝐶) ∘ 𝐴)
75, 6eqtri 2753 . . . 4 (𝐴(𝐵𝐶)) = ((𝐵𝐶) ∘ 𝐴)
8 cnvco 5852 . . . 4 (𝐴𝐵) = (𝐵𝐴)
94, 7, 83eqtr4g 2790 . . 3 (dom 𝐴𝐶(𝐴(𝐵𝐶)) = (𝐴𝐵))
109cnveqd 5842 . 2 (dom 𝐴𝐶(𝐴(𝐵𝐶)) = (𝐴𝐵))
11 relco 6082 . . 3 Rel (𝐴(𝐵𝐶))
12 dfrel2 6165 . . 3 (Rel (𝐴(𝐵𝐶)) ↔ (𝐴(𝐵𝐶)) = (𝐴(𝐵𝐶)))
1311, 12mpbi 230 . 2 (𝐴(𝐵𝐶)) = (𝐴(𝐵𝐶))
14 relco 6082 . . 3 Rel (𝐴𝐵)
15 dfrel2 6165 . . 3 (Rel (𝐴𝐵) ↔ (𝐴𝐵) = (𝐴𝐵))
1614, 15mpbi 230 . 2 (𝐴𝐵) = (𝐴𝐵)
1710, 13, 163eqtr3g 2788 1 (dom 𝐴𝐶 → (𝐴(𝐵𝐶)) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3917  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  ccom 5645  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by:  fcoi1  6737  ofco2  22345  cycpmconjvlem  33105
  Copyright terms: Public domain W3C validator