Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cores2 | Structured version Visualization version GIF version |
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
Ref | Expression |
---|---|
cores2 | ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5804 | . . . . . 6 ⊢ dom 𝐴 = ran ◡𝐴 | |
2 | 1 | sseq1i 3949 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐶 ↔ ran ◡𝐴 ⊆ 𝐶) |
3 | cores 6153 | . . . . 5 ⊢ (ran ◡𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) | |
4 | 2, 3 | sylbi 216 | . . . 4 ⊢ (dom 𝐴 ⊆ 𝐶 → ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = (◡𝐵 ∘ ◡𝐴)) |
5 | cnvco 5794 | . . . . 5 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
6 | cocnvcnv1 6161 | . . . . 5 ⊢ (◡◡(◡𝐵 ↾ 𝐶) ∘ ◡𝐴) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) | |
7 | 5, 6 | eqtri 2766 | . . . 4 ⊢ ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ((◡𝐵 ↾ 𝐶) ∘ ◡𝐴) |
8 | cnvco 5794 | . . . 4 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
9 | 4, 7, 8 | 3eqtr4g 2803 | . . 3 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡(𝐴 ∘ 𝐵)) |
10 | 9 | cnveqd 5784 | . 2 ⊢ (dom 𝐴 ⊆ 𝐶 → ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = ◡◡(𝐴 ∘ 𝐵)) |
11 | relco 6148 | . . 3 ⊢ Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) | |
12 | dfrel2 6092 | . . 3 ⊢ (Rel (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) ↔ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶))) | |
13 | 11, 12 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) |
14 | relco 6148 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
15 | dfrel2 6092 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) ↔ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵)) | |
16 | 14, 15 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) |
17 | 10, 13, 16 | 3eqtr3g 2801 | 1 ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 |
This theorem is referenced by: fcoi1 6648 ofco2 21600 cycpmconjvlem 31408 |
Copyright terms: Public domain | W3C validator |