Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcompact2 Structured version   Visualization version   GIF version

Theorem mzpcompact2 42909
Description: Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
mzpcompact2 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑐
Allowed substitution hint:   𝐴(𝑐)

Proof of Theorem mzpcompact2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6866 . 2 (𝐴 ∈ (mzPoly‘𝐵) → 𝐵 ∈ V)
2 fveq2 6831 . . . . 5 (𝑑 = 𝐵 → (mzPoly‘𝑑) = (mzPoly‘𝐵))
32eleq2d 2819 . . . 4 (𝑑 = 𝐵 → (𝐴 ∈ (mzPoly‘𝑑) ↔ 𝐴 ∈ (mzPoly‘𝐵)))
4 sseq2 3957 . . . . . 6 (𝑑 = 𝐵 → (𝑎𝑑𝑎𝐵))
5 oveq2 7363 . . . . . . . 8 (𝑑 = 𝐵 → (ℤ ↑m 𝑑) = (ℤ ↑m 𝐵))
65mpteq1d 5185 . . . . . . 7 (𝑑 = 𝐵 → (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))
76eqeq2d 2744 . . . . . 6 (𝑑 = 𝐵 → (𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) ↔ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
84, 7anbi12d 632 . . . . 5 (𝑑 = 𝐵 → ((𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ (𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
982rexbidv 3198 . . . 4 (𝑑 = 𝐵 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
103, 9imbi12d 344 . . 3 (𝑑 = 𝐵 → ((𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))))) ↔ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))))
11 vex 3441 . . . 4 𝑑 ∈ V
1211mzpcompact2lem 42908 . . 3 (𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))))
1310, 12vtoclg 3508 . 2 (𝐵 ∈ V → (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
141, 13mpcom 38 1 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  wss 3898  cmpt 5176  cres 5623  cfv 6489  (class class class)co 7355  m cmap 8759  Fincfn 8879  cz 12479  mzPolycmzp 42879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-mzpcl 42880  df-mzp 42881
This theorem is referenced by:  eldioph2  42919
  Copyright terms: Public domain W3C validator