![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpcompact2 | Structured version Visualization version GIF version |
Description: Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
Ref | Expression |
---|---|
mzpcompact2 | ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6527 | . 2 ⊢ (𝐴 ∈ (mzPoly‘𝐵) → 𝐵 ∈ V) | |
2 | fveq2 6493 | . . . . 5 ⊢ (𝑑 = 𝐵 → (mzPoly‘𝑑) = (mzPoly‘𝐵)) | |
3 | 2 | eleq2d 2845 | . . . 4 ⊢ (𝑑 = 𝐵 → (𝐴 ∈ (mzPoly‘𝑑) ↔ 𝐴 ∈ (mzPoly‘𝐵))) |
4 | sseq2 3879 | . . . . . 6 ⊢ (𝑑 = 𝐵 → (𝑎 ⊆ 𝑑 ↔ 𝑎 ⊆ 𝐵)) | |
5 | oveq2 6978 | . . . . . . . 8 ⊢ (𝑑 = 𝐵 → (ℤ ↑𝑚 𝑑) = (ℤ ↑𝑚 𝐵)) | |
6 | 5 | mpteq1d 5010 | . . . . . . 7 ⊢ (𝑑 = 𝐵 → (𝑐 ∈ (ℤ ↑𝑚 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎))) = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))) |
7 | 6 | eqeq2d 2782 | . . . . . 6 ⊢ (𝑑 = 𝐵 → (𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎))) ↔ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
8 | 4, 7 | anbi12d 621 | . . . . 5 ⊢ (𝑑 = 𝐵 → ((𝑎 ⊆ 𝑑 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))))) |
9 | 8 | 2rexbidv 3239 | . . . 4 ⊢ (𝑑 = 𝐵 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑑 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))))) |
10 | 3, 9 | imbi12d 337 | . . 3 ⊢ (𝑑 = 𝐵 → ((𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑑 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) ↔ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))))) |
11 | vex 3412 | . . . 4 ⊢ 𝑑 ∈ V | |
12 | 11 | mzpcompact2lem 38688 | . . 3 ⊢ (𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑑 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
13 | 10, 12 | vtoclg 3480 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))))) |
14 | 1, 13 | mpcom 38 | 1 ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∃wrex 3083 Vcvv 3409 ⊆ wss 3825 ↦ cmpt 5002 ↾ cres 5402 ‘cfv 6182 (class class class)co 6970 ↑𝑚 cmap 8198 Fincfn 8298 ℤcz 11786 mzPolycmzp 38659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-map 8200 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-n0 11701 df-z 11787 df-mzpcl 38660 df-mzp 38661 |
This theorem is referenced by: eldioph2 38699 |
Copyright terms: Public domain | W3C validator |