Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcompact2 Structured version   Visualization version   GIF version

Theorem mzpcompact2 42004
Description: Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
mzpcompact2 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑐
Allowed substitution hint:   𝐴(𝑐)

Proof of Theorem mzpcompact2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6920 . 2 (𝐴 ∈ (mzPoly‘𝐵) → 𝐵 ∈ V)
2 fveq2 6882 . . . . 5 (𝑑 = 𝐵 → (mzPoly‘𝑑) = (mzPoly‘𝐵))
32eleq2d 2811 . . . 4 (𝑑 = 𝐵 → (𝐴 ∈ (mzPoly‘𝑑) ↔ 𝐴 ∈ (mzPoly‘𝐵)))
4 sseq2 4001 . . . . . 6 (𝑑 = 𝐵 → (𝑎𝑑𝑎𝐵))
5 oveq2 7410 . . . . . . . 8 (𝑑 = 𝐵 → (ℤ ↑m 𝑑) = (ℤ ↑m 𝐵))
65mpteq1d 5234 . . . . . . 7 (𝑑 = 𝐵 → (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))
76eqeq2d 2735 . . . . . 6 (𝑑 = 𝐵 → (𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) ↔ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
84, 7anbi12d 630 . . . . 5 (𝑑 = 𝐵 → ((𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ (𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
982rexbidv 3211 . . . 4 (𝑑 = 𝐵 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
103, 9imbi12d 344 . . 3 (𝑑 = 𝐵 → ((𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))))) ↔ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))))
11 vex 3470 . . . 4 𝑑 ∈ V
1211mzpcompact2lem 42003 . . 3 (𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))))
1310, 12vtoclg 3535 . 2 (𝐵 ∈ V → (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
141, 13mpcom 38 1 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wrex 3062  Vcvv 3466  wss 3941  cmpt 5222  cres 5669  cfv 6534  (class class class)co 7402  m cmap 8817  Fincfn 8936  cz 12556  mzPolycmzp 41974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-n0 12471  df-z 12557  df-mzpcl 41975  df-mzp 41976
This theorem is referenced by:  eldioph2  42014
  Copyright terms: Public domain W3C validator