Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpcompact2 | Structured version Visualization version GIF version |
Description: Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
Ref | Expression |
---|---|
mzpcompact2 | ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6789 | . 2 ⊢ (𝐴 ∈ (mzPoly‘𝐵) → 𝐵 ∈ V) | |
2 | fveq2 6756 | . . . . 5 ⊢ (𝑑 = 𝐵 → (mzPoly‘𝑑) = (mzPoly‘𝐵)) | |
3 | 2 | eleq2d 2824 | . . . 4 ⊢ (𝑑 = 𝐵 → (𝐴 ∈ (mzPoly‘𝑑) ↔ 𝐴 ∈ (mzPoly‘𝐵))) |
4 | sseq2 3943 | . . . . . 6 ⊢ (𝑑 = 𝐵 → (𝑎 ⊆ 𝑑 ↔ 𝑎 ⊆ 𝐵)) | |
5 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑑 = 𝐵 → (ℤ ↑m 𝑑) = (ℤ ↑m 𝐵)) | |
6 | 5 | mpteq1d 5165 | . . . . . . 7 ⊢ (𝑑 = 𝐵 → (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎))) = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))) |
7 | 6 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑑 = 𝐵 → (𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎))) ↔ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
8 | 4, 7 | anbi12d 630 | . . . . 5 ⊢ (𝑑 = 𝐵 → ((𝑎 ⊆ 𝑑 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))))) |
9 | 8 | 2rexbidv 3228 | . . . 4 ⊢ (𝑑 = 𝐵 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑑 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))))) |
10 | 3, 9 | imbi12d 344 | . . 3 ⊢ (𝑑 = 𝐵 → ((𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑑 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) ↔ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))))) |
11 | vex 3426 | . . . 4 ⊢ 𝑑 ∈ V | |
12 | 11 | mzpcompact2lem 40489 | . . 3 ⊢ (𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑑 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
13 | 10, 12 | vtoclg 3495 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))))) |
14 | 1, 13 | mpcom 38 | 1 ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ↦ cmpt 5153 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 ℤcz 12249 mzPolycmzp 40460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-mzpcl 40461 df-mzp 40462 |
This theorem is referenced by: eldioph2 40500 |
Copyright terms: Public domain | W3C validator |