Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcompact2 Structured version   Visualization version   GIF version

Theorem mzpcompact2 41247
Description: Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
mzpcompact2 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑐
Allowed substitution hint:   𝐴(𝑐)

Proof of Theorem mzpcompact2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6913 . 2 (𝐴 ∈ (mzPoly‘𝐵) → 𝐵 ∈ V)
2 fveq2 6875 . . . . 5 (𝑑 = 𝐵 → (mzPoly‘𝑑) = (mzPoly‘𝐵))
32eleq2d 2818 . . . 4 (𝑑 = 𝐵 → (𝐴 ∈ (mzPoly‘𝑑) ↔ 𝐴 ∈ (mzPoly‘𝐵)))
4 sseq2 4001 . . . . . 6 (𝑑 = 𝐵 → (𝑎𝑑𝑎𝐵))
5 oveq2 7398 . . . . . . . 8 (𝑑 = 𝐵 → (ℤ ↑m 𝑑) = (ℤ ↑m 𝐵))
65mpteq1d 5233 . . . . . . 7 (𝑑 = 𝐵 → (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))
76eqeq2d 2742 . . . . . 6 (𝑑 = 𝐵 → (𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) ↔ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
84, 7anbi12d 631 . . . . 5 (𝑑 = 𝐵 → ((𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ (𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
982rexbidv 3218 . . . 4 (𝑑 = 𝐵 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
103, 9imbi12d 344 . . 3 (𝑑 = 𝐵 → ((𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))))) ↔ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))))
11 vex 3474 . . . 4 𝑑 ∈ V
1211mzpcompact2lem 41246 . . 3 (𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))))
1310, 12vtoclg 3550 . 2 (𝐵 ∈ V → (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
141, 13mpcom 38 1 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3069  Vcvv 3470  wss 3941  cmpt 5221  cres 5668  cfv 6529  (class class class)co 7390  m cmap 8800  Fincfn 8919  cz 12537  mzPolycmzp 41217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7705  ax-cnex 11145  ax-resscn 11146  ax-1cn 11147  ax-icn 11148  ax-addcl 11149  ax-addrcl 11150  ax-mulcl 11151  ax-mulrcl 11152  ax-mulcom 11153  ax-addass 11154  ax-mulass 11155  ax-distr 11156  ax-i2m1 11157  ax-1ne0 11158  ax-1rid 11159  ax-rnegex 11160  ax-rrecex 11161  ax-cnre 11162  ax-pre-lttri 11163  ax-pre-lttrn 11164  ax-pre-ltadd 11165  ax-pre-mulgt0 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3430  df-v 3472  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4520  df-pw 4595  df-sn 4620  df-pr 4622  df-op 4626  df-uni 4899  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6286  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6531  df-fn 6532  df-f 6533  df-f1 6534  df-fo 6535  df-f1o 6536  df-fv 6537  df-riota 7346  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7650  df-om 7836  df-1st 7954  df-2nd 7955  df-frecs 8245  df-wrecs 8276  df-recs 8350  df-rdg 8389  df-1o 8445  df-er 8683  df-map 8802  df-en 8920  df-dom 8921  df-sdom 8922  df-fin 8923  df-pnf 11229  df-mnf 11230  df-xr 11231  df-ltxr 11232  df-le 11233  df-sub 11425  df-neg 11426  df-nn 12192  df-n0 12452  df-z 12538  df-mzpcl 41218  df-mzp 41219
This theorem is referenced by:  eldioph2  41257
  Copyright terms: Public domain W3C validator