Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcompact2 Structured version   Visualization version   GIF version

Theorem mzpcompact2 42785
Description: Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
mzpcompact2 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑐
Allowed substitution hint:   𝐴(𝑐)

Proof of Theorem mzpcompact2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6852 . 2 (𝐴 ∈ (mzPoly‘𝐵) → 𝐵 ∈ V)
2 fveq2 6817 . . . . 5 (𝑑 = 𝐵 → (mzPoly‘𝑑) = (mzPoly‘𝐵))
32eleq2d 2817 . . . 4 (𝑑 = 𝐵 → (𝐴 ∈ (mzPoly‘𝑑) ↔ 𝐴 ∈ (mzPoly‘𝐵)))
4 sseq2 3956 . . . . . 6 (𝑑 = 𝐵 → (𝑎𝑑𝑎𝐵))
5 oveq2 7349 . . . . . . . 8 (𝑑 = 𝐵 → (ℤ ↑m 𝑑) = (ℤ ↑m 𝐵))
65mpteq1d 5176 . . . . . . 7 (𝑑 = 𝐵 → (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))
76eqeq2d 2742 . . . . . 6 (𝑑 = 𝐵 → (𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) ↔ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
84, 7anbi12d 632 . . . . 5 (𝑑 = 𝐵 → ((𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ (𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
982rexbidv 3197 . . . 4 (𝑑 = 𝐵 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
103, 9imbi12d 344 . . 3 (𝑑 = 𝐵 → ((𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))))) ↔ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))))
11 vex 3440 . . . 4 𝑑 ∈ V
1211mzpcompact2lem 42784 . . 3 (𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))))
1310, 12vtoclg 3507 . 2 (𝐵 ∈ V → (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
141, 13mpcom 38 1 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  wss 3897  cmpt 5167  cres 5613  cfv 6476  (class class class)co 7341  m cmap 8745  Fincfn 8864  cz 12463  mzPolycmzp 42755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-mzpcl 42756  df-mzp 42757
This theorem is referenced by:  eldioph2  42795
  Copyright terms: Public domain W3C validator