Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcompact2 Structured version   Visualization version   GIF version

Theorem mzpcompact2 42707
Description: Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
mzpcompact2 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑐
Allowed substitution hint:   𝐴(𝑐)

Proof of Theorem mzpcompact2
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 elfvex 6911 . 2 (𝐴 ∈ (mzPoly‘𝐵) → 𝐵 ∈ V)
2 fveq2 6873 . . . . 5 (𝑑 = 𝐵 → (mzPoly‘𝑑) = (mzPoly‘𝐵))
32eleq2d 2819 . . . 4 (𝑑 = 𝐵 → (𝐴 ∈ (mzPoly‘𝑑) ↔ 𝐴 ∈ (mzPoly‘𝐵)))
4 sseq2 3983 . . . . . 6 (𝑑 = 𝐵 → (𝑎𝑑𝑎𝐵))
5 oveq2 7408 . . . . . . . 8 (𝑑 = 𝐵 → (ℤ ↑m 𝑑) = (ℤ ↑m 𝐵))
65mpteq1d 5208 . . . . . . 7 (𝑑 = 𝐵 → (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))
76eqeq2d 2745 . . . . . 6 (𝑑 = 𝐵 → (𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))) ↔ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
84, 7anbi12d 632 . . . . 5 (𝑑 = 𝐵 → ((𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ (𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
982rexbidv 3204 . . . 4 (𝑑 = 𝐵 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
103, 9imbi12d 344 . . 3 (𝑑 = 𝐵 → ((𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎))))) ↔ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))))
11 vex 3461 . . . 4 𝑑 ∈ V
1211mzpcompact2lem 42706 . . 3 (𝐴 ∈ (mzPoly‘𝑑) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑑𝐴 = (𝑐 ∈ (ℤ ↑m 𝑑) ↦ (𝑏‘(𝑐𝑎)))))
1310, 12vtoclg 3531 . 2 (𝐵 ∈ V → (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎))))))
141, 13mpcom 38 1 (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3457  wss 3924  cmpt 5199  cres 5654  cfv 6528  (class class class)co 7400  m cmap 8835  Fincfn 8954  cz 12581  mzPolycmzp 42677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-map 8837  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-n0 12495  df-z 12582  df-mzpcl 42678  df-mzp 42679
This theorem is referenced by:  eldioph2  42717
  Copyright terms: Public domain W3C validator