MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsval2 Structured version   Visualization version   GIF version

Theorem imasdsval2 17486
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasds.e 𝐸 = (dist‘𝑅)
imasds.d 𝐷 = (dist‘𝑈)
imasdsval.x (𝜑𝑋𝐵)
imasdsval.y (𝜑𝑌𝐵)
imasdsval.s 𝑆 = { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))}
imasds.u 𝑇 = (𝐸 ↾ (𝑉 × 𝑉))
Assertion
Ref Expression
imasdsval2 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ))
Distinct variable groups:   𝑔,,𝑖,𝑛,𝐹   𝑅,𝑔,,𝑖,𝑛   𝜑,𝑔,,𝑖,𝑛   ,𝑋,𝑛   𝑆,𝑔   𝑔,𝑉,   ,𝑌,𝑛
Allowed substitution hints:   𝐵(𝑔,,𝑖,𝑛)   𝐷(𝑔,,𝑖,𝑛)   𝑆(,𝑖,𝑛)   𝑇(𝑔,,𝑖,𝑛)   𝑈(𝑔,,𝑖,𝑛)   𝐸(𝑔,,𝑖,𝑛)   𝑉(𝑖,𝑛)   𝑋(𝑔,𝑖)   𝑌(𝑔,𝑖)   𝑍(𝑔,,𝑖,𝑛)

Proof of Theorem imasdsval2
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasbas.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasbas.r . . 3 (𝜑𝑅𝑍)
5 imasds.e . . 3 𝐸 = (dist‘𝑅)
6 imasds.d . . 3 𝐷 = (dist‘𝑈)
7 imasdsval.x . . 3 (𝜑𝑋𝐵)
8 imasdsval.y . . 3 (𝜑𝑌𝐵)
9 imasdsval.s . . 3 𝑆 = { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))}
101, 2, 3, 4, 5, 6, 7, 8, 9imasdsval 17485 . 2 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < ))
11 imasds.u . . . . . . . . . 10 𝑇 = (𝐸 ↾ (𝑉 × 𝑉))
1211coeq1i 5826 . . . . . . . . 9 (𝑇𝑔) = ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔)
139ssrab3 4048 . . . . . . . . . . 11 𝑆 ⊆ ((𝑉 × 𝑉) ↑m (1...𝑛))
1413sseli 3945 . . . . . . . . . 10 (𝑔𝑆𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)))
15 elmapi 8825 . . . . . . . . . 10 (𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉))
16 frn 6698 . . . . . . . . . 10 (𝑔:(1...𝑛)⟶(𝑉 × 𝑉) → ran 𝑔 ⊆ (𝑉 × 𝑉))
17 cores 6225 . . . . . . . . . 10 (ran 𝑔 ⊆ (𝑉 × 𝑉) → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸𝑔))
1814, 15, 16, 174syl 19 . . . . . . . . 9 (𝑔𝑆 → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸𝑔))
1912, 18eqtrid 2777 . . . . . . . 8 (𝑔𝑆 → (𝑇𝑔) = (𝐸𝑔))
2019oveq2d 7406 . . . . . . 7 (𝑔𝑆 → (ℝ*𝑠 Σg (𝑇𝑔)) = (ℝ*𝑠 Σg (𝐸𝑔)))
2120mpteq2ia 5205 . . . . . 6 (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2221rneqi 5904 . . . . 5 ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2322a1i 11 . . . 4 (𝑛 ∈ ℕ → ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))))
2423iuneq2i 4980 . . 3 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2524infeq1i 9437 . 2 inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )
2610, 25eqtr4di 2783 1 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  wss 3917   ciun 4958  cmpt 5191   × cxp 5639  ran crn 5642  cres 5643  ccom 5645  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  m cmap 8802  infcinf 9399  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cmin 11412  cn 12193  ...cfz 13475  Basecbs 17186  distcds 17236   Σg cgsu 17410  *𝑠cxrs 17470  s cimas 17474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-imas 17478
This theorem is referenced by:  imasdsf1olem  24268
  Copyright terms: Public domain W3C validator