| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasdsval2 | Structured version Visualization version GIF version | ||
| Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
| Ref | Expression |
|---|---|
| imasbas.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasbas.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasbas.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasds.e | ⊢ 𝐸 = (dist‘𝑅) |
| imasds.d | ⊢ 𝐷 = (dist‘𝑈) |
| imasdsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| imasdsval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| imasdsval.s | ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
| imasds.u | ⊢ 𝑇 = (𝐸 ↾ (𝑉 × 𝑉)) |
| Ref | Expression |
|---|---|
| imasdsval2 | ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasbas.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasbas.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasbas.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imasbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | imasds.e | . . 3 ⊢ 𝐸 = (dist‘𝑅) | |
| 6 | imasds.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
| 7 | imasdsval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | imasdsval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | imasdsval.s | . . 3 ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | imasdsval 17478 | . 2 ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
| 11 | imasds.u | . . . . . . . . . 10 ⊢ 𝑇 = (𝐸 ↾ (𝑉 × 𝑉)) | |
| 12 | 11 | coeq1i 5823 | . . . . . . . . 9 ⊢ (𝑇 ∘ 𝑔) = ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) |
| 13 | 9 | ssrab3 4045 | . . . . . . . . . . 11 ⊢ 𝑆 ⊆ ((𝑉 × 𝑉) ↑m (1...𝑛)) |
| 14 | 13 | sseli 3942 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝑆 → 𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛))) |
| 15 | elmapi 8822 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) | |
| 16 | frn 6695 | . . . . . . . . . 10 ⊢ (𝑔:(1...𝑛)⟶(𝑉 × 𝑉) → ran 𝑔 ⊆ (𝑉 × 𝑉)) | |
| 17 | cores 6222 | . . . . . . . . . 10 ⊢ (ran 𝑔 ⊆ (𝑉 × 𝑉) → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸 ∘ 𝑔)) | |
| 18 | 14, 15, 16, 17 | 4syl 19 | . . . . . . . . 9 ⊢ (𝑔 ∈ 𝑆 → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸 ∘ 𝑔)) |
| 19 | 12, 18 | eqtrid 2776 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝑆 → (𝑇 ∘ 𝑔) = (𝐸 ∘ 𝑔)) |
| 20 | 19 | oveq2d 7403 | . . . . . . 7 ⊢ (𝑔 ∈ 𝑆 → (ℝ*𝑠 Σg (𝑇 ∘ 𝑔)) = (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 21 | 20 | mpteq2ia 5202 | . . . . . 6 ⊢ (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 22 | 21 | rneqi 5901 | . . . . 5 ⊢ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝑛 ∈ ℕ → ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 24 | 23 | iuneq2i 4977 | . . 3 ⊢ ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 25 | 24 | infeq1i 9430 | . 2 ⊢ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < ) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) |
| 26 | 10, 25 | eqtr4di 2782 | 1 ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 ∪ ciun 4955 ↦ cmpt 5188 × cxp 5636 ran crn 5639 ↾ cres 5640 ∘ ccom 5642 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 ↑m cmap 8799 infcinf 9392 1c1 11069 + caddc 11071 ℝ*cxr 11207 < clt 11208 − cmin 11405 ℕcn 12186 ...cfz 13468 Basecbs 17179 distcds 17229 Σg cgsu 17403 ℝ*𝑠cxrs 17463 “s cimas 17467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-imas 17471 |
| This theorem is referenced by: imasdsf1olem 24261 |
| Copyright terms: Public domain | W3C validator |