| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasdsval2 | Structured version Visualization version GIF version | ||
| Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
| Ref | Expression |
|---|---|
| imasbas.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasbas.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasbas.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasds.e | ⊢ 𝐸 = (dist‘𝑅) |
| imasds.d | ⊢ 𝐷 = (dist‘𝑈) |
| imasdsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| imasdsval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| imasdsval.s | ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
| imasds.u | ⊢ 𝑇 = (𝐸 ↾ (𝑉 × 𝑉)) |
| Ref | Expression |
|---|---|
| imasdsval2 | ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasbas.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasbas.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasbas.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imasbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | imasds.e | . . 3 ⊢ 𝐸 = (dist‘𝑅) | |
| 6 | imasds.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
| 7 | imasdsval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | imasdsval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | imasdsval.s | . . 3 ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | imasdsval 17419 | . 2 ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
| 11 | imasds.u | . . . . . . . . . 10 ⊢ 𝑇 = (𝐸 ↾ (𝑉 × 𝑉)) | |
| 12 | 11 | coeq1i 5798 | . . . . . . . . 9 ⊢ (𝑇 ∘ 𝑔) = ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) |
| 13 | 9 | ssrab3 4029 | . . . . . . . . . . 11 ⊢ 𝑆 ⊆ ((𝑉 × 𝑉) ↑m (1...𝑛)) |
| 14 | 13 | sseli 3925 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝑆 → 𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛))) |
| 15 | elmapi 8773 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) | |
| 16 | frn 6658 | . . . . . . . . . 10 ⊢ (𝑔:(1...𝑛)⟶(𝑉 × 𝑉) → ran 𝑔 ⊆ (𝑉 × 𝑉)) | |
| 17 | cores 6196 | . . . . . . . . . 10 ⊢ (ran 𝑔 ⊆ (𝑉 × 𝑉) → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸 ∘ 𝑔)) | |
| 18 | 14, 15, 16, 17 | 4syl 19 | . . . . . . . . 9 ⊢ (𝑔 ∈ 𝑆 → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸 ∘ 𝑔)) |
| 19 | 12, 18 | eqtrid 2778 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝑆 → (𝑇 ∘ 𝑔) = (𝐸 ∘ 𝑔)) |
| 20 | 19 | oveq2d 7362 | . . . . . . 7 ⊢ (𝑔 ∈ 𝑆 → (ℝ*𝑠 Σg (𝑇 ∘ 𝑔)) = (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 21 | 20 | mpteq2ia 5184 | . . . . . 6 ⊢ (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 22 | 21 | rneqi 5876 | . . . . 5 ⊢ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝑛 ∈ ℕ → ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
| 24 | 23 | iuneq2i 4961 | . . 3 ⊢ ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
| 25 | 24 | infeq1i 9363 | . 2 ⊢ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < ) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) |
| 26 | 10, 25 | eqtr4di 2784 | 1 ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 ∪ ciun 4939 ↦ cmpt 5170 × cxp 5612 ran crn 5615 ↾ cres 5616 ∘ ccom 5618 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 ↑m cmap 8750 infcinf 9325 1c1 11007 + caddc 11009 ℝ*cxr 11145 < clt 11146 − cmin 11344 ℕcn 12125 ...cfz 13407 Basecbs 17120 distcds 17170 Σg cgsu 17344 ℝ*𝑠cxrs 17404 “s cimas 17408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-imas 17412 |
| This theorem is referenced by: imasdsf1olem 24288 |
| Copyright terms: Public domain | W3C validator |