![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasdsval2 | Structured version Visualization version GIF version |
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
imasbas.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasbas.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasbas.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasds.e | ⊢ 𝐸 = (dist‘𝑅) |
imasds.d | ⊢ 𝐷 = (dist‘𝑈) |
imasdsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
imasdsval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
imasdsval.s | ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
imasds.u | ⊢ 𝑇 = (𝐸 ↾ (𝑉 × 𝑉)) |
Ref | Expression |
---|---|
imasdsval2 | ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasbas.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasbas.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasbas.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imasbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasds.e | . . 3 ⊢ 𝐸 = (dist‘𝑅) | |
6 | imasds.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
7 | imasdsval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | imasdsval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | imasdsval.s | . . 3 ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | imasdsval 17575 | . 2 ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
11 | imasds.u | . . . . . . . . . 10 ⊢ 𝑇 = (𝐸 ↾ (𝑉 × 𝑉)) | |
12 | 11 | coeq1i 5884 | . . . . . . . . 9 ⊢ (𝑇 ∘ 𝑔) = ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) |
13 | 9 | ssrab3 4105 | . . . . . . . . . . 11 ⊢ 𝑆 ⊆ ((𝑉 × 𝑉) ↑m (1...𝑛)) |
14 | 13 | sseli 4004 | . . . . . . . . . 10 ⊢ (𝑔 ∈ 𝑆 → 𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛))) |
15 | elmapi 8907 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉)) | |
16 | frn 6754 | . . . . . . . . . 10 ⊢ (𝑔:(1...𝑛)⟶(𝑉 × 𝑉) → ran 𝑔 ⊆ (𝑉 × 𝑉)) | |
17 | cores 6280 | . . . . . . . . . 10 ⊢ (ran 𝑔 ⊆ (𝑉 × 𝑉) → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸 ∘ 𝑔)) | |
18 | 14, 15, 16, 17 | 4syl 19 | . . . . . . . . 9 ⊢ (𝑔 ∈ 𝑆 → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸 ∘ 𝑔)) |
19 | 12, 18 | eqtrid 2792 | . . . . . . . 8 ⊢ (𝑔 ∈ 𝑆 → (𝑇 ∘ 𝑔) = (𝐸 ∘ 𝑔)) |
20 | 19 | oveq2d 7464 | . . . . . . 7 ⊢ (𝑔 ∈ 𝑆 → (ℝ*𝑠 Σg (𝑇 ∘ 𝑔)) = (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
21 | 20 | mpteq2ia 5269 | . . . . . 6 ⊢ (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
22 | 21 | rneqi 5962 | . . . . 5 ⊢ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝑛 ∈ ℕ → ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
24 | 23 | iuneq2i 5036 | . . 3 ⊢ ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))) = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
25 | 24 | infeq1i 9547 | . 2 ⊢ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < ) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) |
26 | 10, 25 | eqtr4di 2798 | 1 ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝑇 ∘ 𝑔))), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 ∪ ciun 5015 ↦ cmpt 5249 × cxp 5698 ran crn 5701 ↾ cres 5702 ∘ ccom 5704 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 ↑m cmap 8884 infcinf 9510 1c1 11185 + caddc 11187 ℝ*cxr 11323 < clt 11324 − cmin 11520 ℕcn 12293 ...cfz 13567 Basecbs 17258 distcds 17320 Σg cgsu 17500 ℝ*𝑠cxrs 17560 “s cimas 17564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-imas 17568 |
This theorem is referenced by: imasdsf1olem 24404 |
Copyright terms: Public domain | W3C validator |