MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsval2 Structured version   Visualization version   GIF version

Theorem imasdsval2 17455
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasds.e 𝐸 = (dist‘𝑅)
imasds.d 𝐷 = (dist‘𝑈)
imasdsval.x (𝜑𝑋𝐵)
imasdsval.y (𝜑𝑌𝐵)
imasdsval.s 𝑆 = { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))}
imasds.u 𝑇 = (𝐸 ↾ (𝑉 × 𝑉))
Assertion
Ref Expression
imasdsval2 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ))
Distinct variable groups:   𝑔,,𝑖,𝑛,𝐹   𝑅,𝑔,,𝑖,𝑛   𝜑,𝑔,,𝑖,𝑛   ,𝑋,𝑛   𝑆,𝑔   𝑔,𝑉,   ,𝑌,𝑛
Allowed substitution hints:   𝐵(𝑔,,𝑖,𝑛)   𝐷(𝑔,,𝑖,𝑛)   𝑆(,𝑖,𝑛)   𝑇(𝑔,,𝑖,𝑛)   𝑈(𝑔,,𝑖,𝑛)   𝐸(𝑔,,𝑖,𝑛)   𝑉(𝑖,𝑛)   𝑋(𝑔,𝑖)   𝑌(𝑔,𝑖)   𝑍(𝑔,,𝑖,𝑛)

Proof of Theorem imasdsval2
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasbas.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasbas.r . . 3 (𝜑𝑅𝑍)
5 imasds.e . . 3 𝐸 = (dist‘𝑅)
6 imasds.d . . 3 𝐷 = (dist‘𝑈)
7 imasdsval.x . . 3 (𝜑𝑋𝐵)
8 imasdsval.y . . 3 (𝜑𝑌𝐵)
9 imasdsval.s . . 3 𝑆 = { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))}
101, 2, 3, 4, 5, 6, 7, 8, 9imasdsval 17454 . 2 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < ))
11 imasds.u . . . . . . . . . 10 𝑇 = (𝐸 ↾ (𝑉 × 𝑉))
1211coeq1i 5813 . . . . . . . . 9 (𝑇𝑔) = ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔)
139ssrab3 4041 . . . . . . . . . . 11 𝑆 ⊆ ((𝑉 × 𝑉) ↑m (1...𝑛))
1413sseli 3939 . . . . . . . . . 10 (𝑔𝑆𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)))
15 elmapi 8799 . . . . . . . . . 10 (𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉))
16 frn 6677 . . . . . . . . . 10 (𝑔:(1...𝑛)⟶(𝑉 × 𝑉) → ran 𝑔 ⊆ (𝑉 × 𝑉))
17 cores 6210 . . . . . . . . . 10 (ran 𝑔 ⊆ (𝑉 × 𝑉) → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸𝑔))
1814, 15, 16, 174syl 19 . . . . . . . . 9 (𝑔𝑆 → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸𝑔))
1912, 18eqtrid 2776 . . . . . . . 8 (𝑔𝑆 → (𝑇𝑔) = (𝐸𝑔))
2019oveq2d 7385 . . . . . . 7 (𝑔𝑆 → (ℝ*𝑠 Σg (𝑇𝑔)) = (ℝ*𝑠 Σg (𝐸𝑔)))
2120mpteq2ia 5197 . . . . . 6 (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2221rneqi 5890 . . . . 5 ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2322a1i 11 . . . 4 (𝑛 ∈ ℕ → ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))))
2423iuneq2i 4973 . . 3 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2524infeq1i 9406 . 2 inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )
2610, 25eqtr4di 2782 1 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911   ciun 4951  cmpt 5183   × cxp 5629  ran crn 5632  cres 5633  ccom 5635  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  m cmap 8776  infcinf 9368  1c1 11045   + caddc 11047  *cxr 11183   < clt 11184  cmin 11381  cn 12162  ...cfz 13444  Basecbs 17155  distcds 17205   Σg cgsu 17379  *𝑠cxrs 17439  s cimas 17443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-imas 17447
This theorem is referenced by:  imasdsf1olem  24237
  Copyright terms: Public domain W3C validator