![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasdsval2 | Structured version Visualization version GIF version |
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
imasbas.u | β’ (π β π = (πΉ βs π )) |
imasbas.v | β’ (π β π = (Baseβπ )) |
imasbas.f | β’ (π β πΉ:πβontoβπ΅) |
imasbas.r | β’ (π β π β π) |
imasds.e | β’ πΈ = (distβπ ) |
imasds.d | β’ π· = (distβπ) |
imasdsval.x | β’ (π β π β π΅) |
imasdsval.y | β’ (π β π β π΅) |
imasdsval.s | β’ π = {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π β§ (πΉβ(2nd β(ββπ))) = π β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} |
imasds.u | β’ π = (πΈ βΎ (π Γ π)) |
Ref | Expression |
---|---|
imasdsval2 | β’ (π β (ππ·π) = inf(βͺ π β β ran (π β π β¦ (β*π Ξ£g (π β π))), β*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasbas.u | . . 3 β’ (π β π = (πΉ βs π )) | |
2 | imasbas.v | . . 3 β’ (π β π = (Baseβπ )) | |
3 | imasbas.f | . . 3 β’ (π β πΉ:πβontoβπ΅) | |
4 | imasbas.r | . . 3 β’ (π β π β π) | |
5 | imasds.e | . . 3 β’ πΈ = (distβπ ) | |
6 | imasds.d | . . 3 β’ π· = (distβπ) | |
7 | imasdsval.x | . . 3 β’ (π β π β π΅) | |
8 | imasdsval.y | . . 3 β’ (π β π β π΅) | |
9 | imasdsval.s | . . 3 β’ π = {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π β§ (πΉβ(2nd β(ββπ))) = π β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | imasdsval 17461 | . 2 β’ (π β (ππ·π) = inf(βͺ π β β ran (π β π β¦ (β*π Ξ£g (πΈ β π))), β*, < )) |
11 | imasds.u | . . . . . . . . . 10 β’ π = (πΈ βΎ (π Γ π)) | |
12 | 11 | coeq1i 5860 | . . . . . . . . 9 β’ (π β π) = ((πΈ βΎ (π Γ π)) β π) |
13 | 9 | ssrab3 4081 | . . . . . . . . . . 11 β’ π β ((π Γ π) βm (1...π)) |
14 | 13 | sseli 3979 | . . . . . . . . . 10 β’ (π β π β π β ((π Γ π) βm (1...π))) |
15 | elmapi 8843 | . . . . . . . . . 10 β’ (π β ((π Γ π) βm (1...π)) β π:(1...π)βΆ(π Γ π)) | |
16 | frn 6725 | . . . . . . . . . 10 β’ (π:(1...π)βΆ(π Γ π) β ran π β (π Γ π)) | |
17 | cores 6249 | . . . . . . . . . 10 β’ (ran π β (π Γ π) β ((πΈ βΎ (π Γ π)) β π) = (πΈ β π)) | |
18 | 14, 15, 16, 17 | 4syl 19 | . . . . . . . . 9 β’ (π β π β ((πΈ βΎ (π Γ π)) β π) = (πΈ β π)) |
19 | 12, 18 | eqtrid 2785 | . . . . . . . 8 β’ (π β π β (π β π) = (πΈ β π)) |
20 | 19 | oveq2d 7425 | . . . . . . 7 β’ (π β π β (β*π Ξ£g (π β π)) = (β*π Ξ£g (πΈ β π))) |
21 | 20 | mpteq2ia 5252 | . . . . . 6 β’ (π β π β¦ (β*π Ξ£g (π β π))) = (π β π β¦ (β*π Ξ£g (πΈ β π))) |
22 | 21 | rneqi 5937 | . . . . 5 β’ ran (π β π β¦ (β*π Ξ£g (π β π))) = ran (π β π β¦ (β*π Ξ£g (πΈ β π))) |
23 | 22 | a1i 11 | . . . 4 β’ (π β β β ran (π β π β¦ (β*π Ξ£g (π β π))) = ran (π β π β¦ (β*π Ξ£g (πΈ β π)))) |
24 | 23 | iuneq2i 5019 | . . 3 β’ βͺ π β β ran (π β π β¦ (β*π Ξ£g (π β π))) = βͺ π β β ran (π β π β¦ (β*π Ξ£g (πΈ β π))) |
25 | 24 | infeq1i 9473 | . 2 β’ inf(βͺ π β β ran (π β π β¦ (β*π Ξ£g (π β π))), β*, < ) = inf(βͺ π β β ran (π β π β¦ (β*π Ξ£g (πΈ β π))), β*, < ) |
26 | 10, 25 | eqtr4di 2791 | 1 β’ (π β (ππ·π) = inf(βͺ π β β ran (π β π β¦ (β*π Ξ£g (π β π))), β*, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 {crab 3433 β wss 3949 βͺ ciun 4998 β¦ cmpt 5232 Γ cxp 5675 ran crn 5678 βΎ cres 5679 β ccom 5681 βΆwf 6540 βontoβwfo 6542 βcfv 6544 (class class class)co 7409 1st c1st 7973 2nd c2nd 7974 βm cmap 8820 infcinf 9436 1c1 11111 + caddc 11113 β*cxr 11247 < clt 11248 β cmin 11444 βcn 12212 ...cfz 13484 Basecbs 17144 distcds 17206 Ξ£g cgsu 17386 β*π cxrs 17446 βs cimas 17450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-imas 17454 |
This theorem is referenced by: imasdsf1olem 23879 |
Copyright terms: Public domain | W3C validator |