MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsval2 Structured version   Visualization version   GIF version

Theorem imasdsval2 17227
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasds.e 𝐸 = (dist‘𝑅)
imasds.d 𝐷 = (dist‘𝑈)
imasdsval.x (𝜑𝑋𝐵)
imasdsval.y (𝜑𝑌𝐵)
imasdsval.s 𝑆 = { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))}
imasds.u 𝑇 = (𝐸 ↾ (𝑉 × 𝑉))
Assertion
Ref Expression
imasdsval2 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ))
Distinct variable groups:   𝑔,,𝑖,𝑛,𝐹   𝑅,𝑔,,𝑖,𝑛   𝜑,𝑔,,𝑖,𝑛   ,𝑋,𝑛   𝑆,𝑔   𝑔,𝑉,   ,𝑌,𝑛
Allowed substitution hints:   𝐵(𝑔,,𝑖,𝑛)   𝐷(𝑔,,𝑖,𝑛)   𝑆(,𝑖,𝑛)   𝑇(𝑔,,𝑖,𝑛)   𝑈(𝑔,,𝑖,𝑛)   𝐸(𝑔,,𝑖,𝑛)   𝑉(𝑖,𝑛)   𝑋(𝑔,𝑖)   𝑌(𝑔,𝑖)   𝑍(𝑔,,𝑖,𝑛)

Proof of Theorem imasdsval2
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasbas.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasbas.r . . 3 (𝜑𝑅𝑍)
5 imasds.e . . 3 𝐸 = (dist‘𝑅)
6 imasds.d . . 3 𝐷 = (dist‘𝑈)
7 imasdsval.x . . 3 (𝜑𝑋𝐵)
8 imasdsval.y . . 3 (𝜑𝑌𝐵)
9 imasdsval.s . . 3 𝑆 = { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))}
101, 2, 3, 4, 5, 6, 7, 8, 9imasdsval 17226 . 2 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < ))
11 imasds.u . . . . . . . . . 10 𝑇 = (𝐸 ↾ (𝑉 × 𝑉))
1211coeq1i 5768 . . . . . . . . 9 (𝑇𝑔) = ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔)
139ssrab3 4015 . . . . . . . . . . 11 𝑆 ⊆ ((𝑉 × 𝑉) ↑m (1...𝑛))
1413sseli 3917 . . . . . . . . . 10 (𝑔𝑆𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)))
15 elmapi 8637 . . . . . . . . . 10 (𝑔 ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉))
16 frn 6607 . . . . . . . . . 10 (𝑔:(1...𝑛)⟶(𝑉 × 𝑉) → ran 𝑔 ⊆ (𝑉 × 𝑉))
17 cores 6153 . . . . . . . . . 10 (ran 𝑔 ⊆ (𝑉 × 𝑉) → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸𝑔))
1814, 15, 16, 174syl 19 . . . . . . . . 9 (𝑔𝑆 → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸𝑔))
1912, 18eqtrid 2790 . . . . . . . 8 (𝑔𝑆 → (𝑇𝑔) = (𝐸𝑔))
2019oveq2d 7291 . . . . . . 7 (𝑔𝑆 → (ℝ*𝑠 Σg (𝑇𝑔)) = (ℝ*𝑠 Σg (𝐸𝑔)))
2120mpteq2ia 5177 . . . . . 6 (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2221rneqi 5846 . . . . 5 ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2322a1i 11 . . . 4 (𝑛 ∈ ℕ → ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))))
2423iuneq2i 4945 . . 3 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2524infeq1i 9237 . 2 inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )
2610, 25eqtr4di 2796 1 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  wss 3887   ciun 4924  cmpt 5157   × cxp 5587  ran crn 5590  cres 5591  ccom 5593  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  m cmap 8615  infcinf 9200  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cmin 11205  cn 11973  ...cfz 13239  Basecbs 16912  distcds 16971   Σg cgsu 17151  *𝑠cxrs 17211  s cimas 17215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-imas 17219
This theorem is referenced by:  imasdsf1olem  23526
  Copyright terms: Public domain W3C validator