Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prds1 | Structured version Visualization version GIF version |
Description: Value of the ring unit in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
prds1.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prds1.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prds1.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prds1.r | ⊢ (𝜑 → 𝑅:𝐼⟶Ring) |
Ref | Expression |
---|---|
prds1 | ⊢ (𝜑 → (1r ∘ 𝑅) = (1r‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . . 4 ⊢ (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅)) | |
2 | prds1.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | prds1.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | mgpf 19373 | . . . . 5 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd | |
5 | prds1.r | . . . . 5 ⊢ (𝜑 → 𝑅:𝐼⟶Ring) | |
6 | fco2 6519 | . . . . 5 ⊢ (((mulGrp ↾ Ring):Ring⟶Mnd ∧ 𝑅:𝐼⟶Ring) → (mulGrp ∘ 𝑅):𝐼⟶Mnd) | |
7 | 4, 5, 6 | sylancr 591 | . . . 4 ⊢ (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶Mnd) |
8 | 1, 2, 3, 7 | prds0g 18004 | . . 3 ⊢ (𝜑 → (0g ∘ (mulGrp ∘ 𝑅)) = (0g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
9 | eqidd 2760 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) | |
10 | prds1.y | . . . . . 6 ⊢ 𝑌 = (𝑆Xs𝑅) | |
11 | eqid 2759 | . . . . . 6 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
12 | 5 | ffnd 6500 | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
13 | 10, 11, 1, 2, 3, 12 | prdsmgp 19424 | . . . . 5 ⊢ (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))) |
14 | 13 | simpld 499 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
15 | 13 | simprd 500 | . . . . 5 ⊢ (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
16 | 15 | oveqdr 7179 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦)) |
17 | 9, 14, 16 | grpidpropd 17931 | . . 3 ⊢ (𝜑 → (0g‘(mulGrp‘𝑌)) = (0g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
18 | 8, 17 | eqtr4d 2797 | . 2 ⊢ (𝜑 → (0g ∘ (mulGrp ∘ 𝑅)) = (0g‘(mulGrp‘𝑌))) |
19 | df-ur 19313 | . . . 4 ⊢ 1r = (0g ∘ mulGrp) | |
20 | 19 | coeq1i 5700 | . . 3 ⊢ (1r ∘ 𝑅) = ((0g ∘ mulGrp) ∘ 𝑅) |
21 | coass 6096 | . . 3 ⊢ ((0g ∘ mulGrp) ∘ 𝑅) = (0g ∘ (mulGrp ∘ 𝑅)) | |
22 | 20, 21 | eqtri 2782 | . 2 ⊢ (1r ∘ 𝑅) = (0g ∘ (mulGrp ∘ 𝑅)) |
23 | eqid 2759 | . . 3 ⊢ (1r‘𝑌) = (1r‘𝑌) | |
24 | 11, 23 | ringidval 19314 | . 2 ⊢ (1r‘𝑌) = (0g‘(mulGrp‘𝑌)) |
25 | 18, 22, 24 | 3eqtr4g 2819 | 1 ⊢ (𝜑 → (1r ∘ 𝑅) = (1r‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ↾ cres 5527 ∘ ccom 5529 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 Basecbs 16534 +gcplusg 16616 0gc0g 16764 Xscprds 16770 Mndcmnd 17970 mulGrpcmgp 19300 1rcur 19312 Ringcrg 19358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-ixp 8481 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8932 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-fz 12933 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-plusg 16629 df-mulr 16630 df-sca 16632 df-vsca 16633 df-ip 16634 df-tset 16635 df-ple 16636 df-ds 16638 df-hom 16640 df-cco 16641 df-0g 16766 df-prds 16772 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-mgp 19301 df-ur 19313 df-ring 19360 |
This theorem is referenced by: pws1 19430 |
Copyright terms: Public domain | W3C validator |