![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prds1 | Structured version Visualization version GIF version |
Description: Value of the ring unit in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
prds1.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prds1.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prds1.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prds1.r | ⊢ (𝜑 → 𝑅:𝐼⟶Ring) |
Ref | Expression |
---|---|
prds1 | ⊢ (𝜑 → (1r ∘ 𝑅) = (1r‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . . 4 ⊢ (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅)) | |
2 | prds1.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | prds1.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | mgpf 19003 | . . . . 5 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd | |
5 | prds1.r | . . . . 5 ⊢ (𝜑 → 𝑅:𝐼⟶Ring) | |
6 | fco2 6408 | . . . . 5 ⊢ (((mulGrp ↾ Ring):Ring⟶Mnd ∧ 𝑅:𝐼⟶Ring) → (mulGrp ∘ 𝑅):𝐼⟶Mnd) | |
7 | 4, 5, 6 | sylancr 587 | . . . 4 ⊢ (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶Mnd) |
8 | 1, 2, 3, 7 | prds0g 17767 | . . 3 ⊢ (𝜑 → (0g ∘ (mulGrp ∘ 𝑅)) = (0g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
9 | eqidd 2798 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) | |
10 | prds1.y | . . . . . 6 ⊢ 𝑌 = (𝑆Xs𝑅) | |
11 | eqid 2797 | . . . . . 6 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
12 | 5 | ffnd 6390 | . . . . . 6 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
13 | 10, 11, 1, 2, 3, 12 | prdsmgp 19054 | . . . . 5 ⊢ (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))) |
14 | 13 | simpld 495 | . . . 4 ⊢ (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
15 | 13 | simprd 496 | . . . . 5 ⊢ (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
16 | 15 | oveqdr 7051 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦)) |
17 | 9, 14, 16 | grpidpropd 17704 | . . 3 ⊢ (𝜑 → (0g‘(mulGrp‘𝑌)) = (0g‘(𝑆Xs(mulGrp ∘ 𝑅)))) |
18 | 8, 17 | eqtr4d 2836 | . 2 ⊢ (𝜑 → (0g ∘ (mulGrp ∘ 𝑅)) = (0g‘(mulGrp‘𝑌))) |
19 | df-ur 18946 | . . . 4 ⊢ 1r = (0g ∘ mulGrp) | |
20 | 19 | coeq1i 5623 | . . 3 ⊢ (1r ∘ 𝑅) = ((0g ∘ mulGrp) ∘ 𝑅) |
21 | coass 6000 | . . 3 ⊢ ((0g ∘ mulGrp) ∘ 𝑅) = (0g ∘ (mulGrp ∘ 𝑅)) | |
22 | 20, 21 | eqtri 2821 | . 2 ⊢ (1r ∘ 𝑅) = (0g ∘ (mulGrp ∘ 𝑅)) |
23 | eqid 2797 | . . 3 ⊢ (1r‘𝑌) = (1r‘𝑌) | |
24 | 11, 23 | ringidval 18947 | . 2 ⊢ (1r‘𝑌) = (0g‘(mulGrp‘𝑌)) |
25 | 18, 22, 24 | 3eqtr4g 2858 | 1 ⊢ (𝜑 → (1r ∘ 𝑅) = (1r‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ↾ cres 5452 ∘ ccom 5454 ⟶wf 6228 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 +gcplusg 16398 0gc0g 16546 Xscprds 16552 Mndcmnd 17737 mulGrpcmgp 18933 1rcur 18945 Ringcrg 18991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-map 8265 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-sup 8759 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-fz 12747 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-plusg 16411 df-mulr 16412 df-sca 16414 df-vsca 16415 df-ip 16416 df-tset 16417 df-ple 16418 df-ds 16420 df-hom 16422 df-cco 16423 df-0g 16548 df-prds 16554 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-mgp 18934 df-ur 18946 df-ring 18993 |
This theorem is referenced by: pws1 19060 |
Copyright terms: Public domain | W3C validator |