Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prds1 Structured version   Visualization version   GIF version

Theorem prds1 19428
 Description: Value of the ring unit in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prds1.y 𝑌 = (𝑆Xs𝑅)
prds1.i (𝜑𝐼𝑊)
prds1.s (𝜑𝑆𝑉)
prds1.r (𝜑𝑅:𝐼⟶Ring)
Assertion
Ref Expression
prds1 (𝜑 → (1r𝑅) = (1r𝑌))

Proof of Theorem prds1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2759 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
2 prds1.i . . . 4 (𝜑𝐼𝑊)
3 prds1.s . . . 4 (𝜑𝑆𝑉)
4 mgpf 19373 . . . . 5 (mulGrp ↾ Ring):Ring⟶Mnd
5 prds1.r . . . . 5 (𝜑𝑅:𝐼⟶Ring)
6 fco2 6519 . . . . 5 (((mulGrp ↾ Ring):Ring⟶Mnd ∧ 𝑅:𝐼⟶Ring) → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
74, 5, 6sylancr 591 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
81, 2, 3, 7prds0g 18004 . . 3 (𝜑 → (0g ∘ (mulGrp ∘ 𝑅)) = (0g‘(𝑆Xs(mulGrp ∘ 𝑅))))
9 eqidd 2760 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
10 prds1.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
11 eqid 2759 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
125ffnd 6500 . . . . . 6 (𝜑𝑅 Fn 𝐼)
1310, 11, 1, 2, 3, 12prdsmgp 19424 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
1413simpld 499 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
1513simprd 500 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
1615oveqdr 7179 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
179, 14, 16grpidpropd 17931 . . 3 (𝜑 → (0g‘(mulGrp‘𝑌)) = (0g‘(𝑆Xs(mulGrp ∘ 𝑅))))
188, 17eqtr4d 2797 . 2 (𝜑 → (0g ∘ (mulGrp ∘ 𝑅)) = (0g‘(mulGrp‘𝑌)))
19 df-ur 19313 . . . 4 1r = (0g ∘ mulGrp)
2019coeq1i 5700 . . 3 (1r𝑅) = ((0g ∘ mulGrp) ∘ 𝑅)
21 coass 6096 . . 3 ((0g ∘ mulGrp) ∘ 𝑅) = (0g ∘ (mulGrp ∘ 𝑅))
2220, 21eqtri 2782 . 2 (1r𝑅) = (0g ∘ (mulGrp ∘ 𝑅))
23 eqid 2759 . . 3 (1r𝑌) = (1r𝑌)
2411, 23ringidval 19314 . 2 (1r𝑌) = (0g‘(mulGrp‘𝑌))
2518, 22, 243eqtr4g 2819 1 (𝜑 → (1r𝑅) = (1r𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112   ↾ cres 5527   ∘ ccom 5529  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151  Basecbs 16534  +gcplusg 16616  0gc0g 16764  Xscprds 16770  Mndcmnd 17970  mulGrpcmgp 19300  1rcur 19312  Ringcrg 19358 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8932  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-fz 12933  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-plusg 16629  df-mulr 16630  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-hom 16640  df-cco 16641  df-0g 16766  df-prds 16772  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-mgp 19301  df-ur 19313  df-ring 19360 This theorem is referenced by:  pws1  19430
 Copyright terms: Public domain W3C validator