MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prds1 Structured version   Visualization version   GIF version

Theorem prds1 20337
Description: Value of the ring unity in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prds1.y 𝑌 = (𝑆Xs𝑅)
prds1.i (𝜑𝐼𝑊)
prds1.s (𝜑𝑆𝑉)
prds1.r (𝜑𝑅:𝐼⟶Ring)
Assertion
Ref Expression
prds1 (𝜑 → (1r𝑅) = (1r𝑌))

Proof of Theorem prds1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
2 prds1.i . . . 4 (𝜑𝐼𝑊)
3 prds1.s . . . 4 (𝜑𝑆𝑉)
4 mgpf 20266 . . . . 5 (mulGrp ↾ Ring):Ring⟶Mnd
5 prds1.r . . . . 5 (𝜑𝑅:𝐼⟶Ring)
6 fco2 6763 . . . . 5 (((mulGrp ↾ Ring):Ring⟶Mnd ∧ 𝑅:𝐼⟶Ring) → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
74, 5, 6sylancr 587 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
81, 2, 3, 7prds0g 18797 . . 3 (𝜑 → (0g ∘ (mulGrp ∘ 𝑅)) = (0g‘(𝑆Xs(mulGrp ∘ 𝑅))))
9 eqidd 2736 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
10 prds1.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
11 eqid 2735 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
125ffnd 6738 . . . . . 6 (𝜑𝑅 Fn 𝐼)
1310, 11, 1, 2, 3, 12prdsmgp 20169 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
1413simpld 494 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
1513simprd 495 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
1615oveqdr 7459 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
179, 14, 16grpidpropd 18688 . . 3 (𝜑 → (0g‘(mulGrp‘𝑌)) = (0g‘(𝑆Xs(mulGrp ∘ 𝑅))))
188, 17eqtr4d 2778 . 2 (𝜑 → (0g ∘ (mulGrp ∘ 𝑅)) = (0g‘(mulGrp‘𝑌)))
19 df-ur 20200 . . . 4 1r = (0g ∘ mulGrp)
2019coeq1i 5873 . . 3 (1r𝑅) = ((0g ∘ mulGrp) ∘ 𝑅)
21 coass 6287 . . 3 ((0g ∘ mulGrp) ∘ 𝑅) = (0g ∘ (mulGrp ∘ 𝑅))
2220, 21eqtri 2763 . 2 (1r𝑅) = (0g ∘ (mulGrp ∘ 𝑅))
23 eqid 2735 . . 3 (1r𝑌) = (1r𝑌)
2411, 23ringidval 20201 . 2 (1r𝑌) = (0g‘(mulGrp‘𝑌))
2518, 22, 243eqtr4g 2800 1 (𝜑 → (1r𝑅) = (1r𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cres 5691  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Xscprds 17492  Mndcmnd 18760  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mgp 20153  df-ur 20200  df-ring 20253
This theorem is referenced by:  pws1  20339
  Copyright terms: Public domain W3C validator