Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjslem1 Structured version   Visualization version   GIF version

Theorem cycpmconjslem1 33134
Description: Lemma for cycpmconjs 33136. (Contributed by Thierry Arnoux, 14-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmconjslem1.d (𝜑𝐷𝑉)
cycpmconjslem1.w (𝜑𝑊 ∈ Word 𝐷)
cycpmconjslem1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmconjslem1.2 (𝜑 → (♯‘𝑊) = 𝑃)
Assertion
Ref Expression
cycpmconjslem1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))

Proof of Theorem cycpmconjslem1
StepHypRef Expression
1 resco 6205 . . . . 5 ((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) = (𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊))
21coeq1i 5806 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊)
3 ssid 3954 . . . . 5 ran 𝑊 ⊆ ran 𝑊
4 cores 6204 . . . . 5 (ran 𝑊 ⊆ ran 𝑊 → (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊))
53, 4ax-mp 5 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊)
6 coass 6221 . . . 4 ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
72, 5, 63eqtr3i 2764 . . 3 ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
8 cycpmconjs.m . . . . . . 7 𝑀 = (toCyc‘𝐷)
9 cycpmconjslem1.d . . . . . . 7 (𝜑𝐷𝑉)
10 cycpmconjslem1.w . . . . . . 7 (𝜑𝑊 ∈ Word 𝐷)
11 cycpmconjslem1.1 . . . . . . 7 (𝜑𝑊:dom 𝑊1-1𝐷)
128, 9, 10, 11tocycfvres1 33090 . . . . . 6 (𝜑 → ((𝑀𝑊) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ 𝑊))
1312coeq1d 5808 . . . . 5 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊))
14 coass 6221 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊))
15 f1f1orn 6782 . . . . . . . . 9 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
16 f1ococnv1 6800 . . . . . . . . 9 (𝑊:dom 𝑊1-1-onto→ran 𝑊 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1711, 15, 163syl 18 . . . . . . . 8 (𝜑 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1817coeq2d 5809 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) ∘ (𝑊𝑊)) = ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)))
19 coires1 6220 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)) = ((𝑊 cyclShift 1) ↾ dom 𝑊)
2018, 19eqtr2di 2785 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊)))
2114, 20eqtr4id 2787 . . . . 5 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ↾ dom 𝑊))
22 1zzd 12513 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
23 cshwfn 14718 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
2410, 22, 23syl2anc 584 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
25 wrddm 14438 . . . . . . . . 9 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
2610, 25syl 17 . . . . . . . 8 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2726fneq2d 6583 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) Fn dom 𝑊 ↔ (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))))
2824, 27mpbird 257 . . . . . 6 (𝜑 → (𝑊 cyclShift 1) Fn dom 𝑊)
29 fnresdm 6608 . . . . . 6 ((𝑊 cyclShift 1) Fn dom 𝑊 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3028, 29syl 17 . . . . 5 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3113, 21, 303eqtrd 2772 . . . 4 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (𝑊 cyclShift 1))
3231coeq2d 5809 . . 3 (𝜑 → (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊)) = (𝑊 ∘ (𝑊 cyclShift 1)))
337, 32eqtrid 2780 . 2 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (𝑊 cyclShift 1)))
34 wrdfn 14445 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
3510, 34syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
36 df-f 6493 . . . . 5 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊 ↔ (𝑊 Fn (0..^(♯‘𝑊)) ∧ ran 𝑊 ⊆ ran 𝑊))
3735, 3, 36sylanblrc 590 . . . 4 (𝜑𝑊:(0..^(♯‘𝑊))⟶ran 𝑊)
38 iswrdi 14434 . . . 4 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊𝑊 ∈ Word ran 𝑊)
3937, 38syl 17 . . 3 (𝜑𝑊 ∈ Word ran 𝑊)
40 f1ocnv 6783 . . . 4 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
41 f1of 6771 . . . 4 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4211, 15, 40, 414syl 19 . . 3 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
43 cshco 14753 . . 3 ((𝑊 ∈ Word ran 𝑊 ∧ 1 ∈ ℤ ∧ 𝑊:ran 𝑊⟶dom 𝑊) → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
4439, 22, 42, 43syl3anc 1373 . 2 (𝜑 → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
45 cycpmconjslem1.2 . . . . . . 7 (𝜑 → (♯‘𝑊) = 𝑃)
4645oveq2d 7371 . . . . . 6 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑃))
4726, 46eqtrd 2768 . . . . 5 (𝜑 → dom 𝑊 = (0..^𝑃))
4847reseq2d 5935 . . . 4 (𝜑 → ( I ↾ dom 𝑊) = ( I ↾ (0..^𝑃)))
4917, 48eqtrd 2768 . . 3 (𝜑 → (𝑊𝑊) = ( I ↾ (0..^𝑃)))
5049oveq1d 7370 . 2 (𝜑 → ((𝑊𝑊) cyclShift 1) = (( I ↾ (0..^𝑃)) cyclShift 1))
5133, 44, 503eqtrd 2772 1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3899  {csn 4577   I cid 5515  ccnv 5620  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  ccom 5625   Fn wfn 6484  wf 6485  1-1wf1 6486  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  0cc0 11016  1c1 11017  cz 12478  ..^cfzo 13564  chash 14247  Word cword 14430   cyclShift ccsh 14705  SymGrpcsymg 19291  toCycctocyc 33086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-n0 12392  df-z 12479  df-uz 12743  df-rp 12901  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-hash 14248  df-word 14431  df-concat 14488  df-substr 14559  df-pfx 14589  df-csh 14706  df-tocyc 33087
This theorem is referenced by:  cycpmconjslem2  33135
  Copyright terms: Public domain W3C validator