Proof of Theorem cycpmconjslem1
Step | Hyp | Ref
| Expression |
1 | | resco 6080 |
. . . . 5
⊢ ((◡𝑊 ∘ (𝑀‘𝑊)) ↾ ran 𝑊) = (◡𝑊 ∘ ((𝑀‘𝑊) ↾ ran 𝑊)) |
2 | 1 | coeq1i 5699 |
. . . 4
⊢ (((◡𝑊 ∘ (𝑀‘𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((◡𝑊 ∘ ((𝑀‘𝑊) ↾ ran 𝑊)) ∘ 𝑊) |
3 | | ssid 3914 |
. . . . 5
⊢ ran 𝑊 ⊆ ran 𝑊 |
4 | | cores 6079 |
. . . . 5
⊢ (ran
𝑊 ⊆ ran 𝑊 → (((◡𝑊 ∘ (𝑀‘𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((◡𝑊 ∘ (𝑀‘𝑊)) ∘ 𝑊)) |
5 | 3, 4 | ax-mp 5 |
. . . 4
⊢ (((◡𝑊 ∘ (𝑀‘𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((◡𝑊 ∘ (𝑀‘𝑊)) ∘ 𝑊) |
6 | | coass 6095 |
. . . 4
⊢ ((◡𝑊 ∘ ((𝑀‘𝑊) ↾ ran 𝑊)) ∘ 𝑊) = (◡𝑊 ∘ (((𝑀‘𝑊) ↾ ran 𝑊) ∘ 𝑊)) |
7 | 2, 5, 6 | 3eqtr3i 2789 |
. . 3
⊢ ((◡𝑊 ∘ (𝑀‘𝑊)) ∘ 𝑊) = (◡𝑊 ∘ (((𝑀‘𝑊) ↾ ran 𝑊) ∘ 𝑊)) |
8 | | cycpmconjs.m |
. . . . . . 7
⊢ 𝑀 = (toCyc‘𝐷) |
9 | | cycpmconjslem1.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
10 | | cycpmconjslem1.w |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
11 | | cycpmconjslem1.1 |
. . . . . . 7
⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
12 | 8, 9, 10, 11 | tocycfvres1 30903 |
. . . . . 6
⊢ (𝜑 → ((𝑀‘𝑊) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ ◡𝑊)) |
13 | 12 | coeq1d 5701 |
. . . . 5
⊢ (𝜑 → (((𝑀‘𝑊) ↾ ran 𝑊) ∘ 𝑊) = (((𝑊 cyclShift 1) ∘ ◡𝑊) ∘ 𝑊)) |
14 | | coass 6095 |
. . . . . 6
⊢ (((𝑊 cyclShift 1) ∘ ◡𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ (◡𝑊 ∘ 𝑊)) |
15 | | f1f1orn 6613 |
. . . . . . . . 9
⊢ (𝑊:dom 𝑊–1-1→𝐷 → 𝑊:dom 𝑊–1-1-onto→ran
𝑊) |
16 | | f1ococnv1 6630 |
. . . . . . . . 9
⊢ (𝑊:dom 𝑊–1-1-onto→ran
𝑊 → (◡𝑊 ∘ 𝑊) = ( I ↾ dom 𝑊)) |
17 | 11, 15, 16 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑊 ∘ 𝑊) = ( I ↾ dom 𝑊)) |
18 | 17 | coeq2d 5702 |
. . . . . . 7
⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ (◡𝑊 ∘ 𝑊)) = ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊))) |
19 | | coires1 6094 |
. . . . . . 7
⊢ ((𝑊 cyclShift 1) ∘ ( I
↾ dom 𝑊)) = ((𝑊 cyclShift 1) ↾ dom 𝑊) |
20 | 18, 19 | eqtr2di 2810 |
. . . . . 6
⊢ (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = ((𝑊 cyclShift 1) ∘ (◡𝑊 ∘ 𝑊))) |
21 | 14, 20 | eqtr4id 2812 |
. . . . 5
⊢ (𝜑 → (((𝑊 cyclShift 1) ∘ ◡𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ↾ dom 𝑊)) |
22 | | 1zzd 12052 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
23 | | cshwfn 14210 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn
(0..^(♯‘𝑊))) |
24 | 10, 22, 23 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) |
25 | | wrddm 13920 |
. . . . . . . . 9
⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) |
26 | 10, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
27 | 26 | fneq2d 6428 |
. . . . . . 7
⊢ (𝜑 → ((𝑊 cyclShift 1) Fn dom 𝑊 ↔ (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))) |
28 | 24, 27 | mpbird 260 |
. . . . . 6
⊢ (𝜑 → (𝑊 cyclShift 1) Fn dom 𝑊) |
29 | | fnresdm 6449 |
. . . . . 6
⊢ ((𝑊 cyclShift 1) Fn dom 𝑊 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1)) |
30 | 28, 29 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1)) |
31 | 13, 21, 30 | 3eqtrd 2797 |
. . . 4
⊢ (𝜑 → (((𝑀‘𝑊) ↾ ran 𝑊) ∘ 𝑊) = (𝑊 cyclShift 1)) |
32 | 31 | coeq2d 5702 |
. . 3
⊢ (𝜑 → (◡𝑊 ∘ (((𝑀‘𝑊) ↾ ran 𝑊) ∘ 𝑊)) = (◡𝑊 ∘ (𝑊 cyclShift 1))) |
33 | 7, 32 | syl5eq 2805 |
. 2
⊢ (𝜑 → ((◡𝑊 ∘ (𝑀‘𝑊)) ∘ 𝑊) = (◡𝑊 ∘ (𝑊 cyclShift 1))) |
34 | | wrdfn 13927 |
. . . . . 6
⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) |
35 | 10, 34 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
36 | | df-f 6339 |
. . . . 5
⊢ (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊 ↔ (𝑊 Fn (0..^(♯‘𝑊)) ∧ ran 𝑊 ⊆ ran 𝑊)) |
37 | 35, 3, 36 | sylanblrc 593 |
. . . 4
⊢ (𝜑 → 𝑊:(0..^(♯‘𝑊))⟶ran 𝑊) |
38 | | iswrdi 13917 |
. . . 4
⊢ (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊 → 𝑊 ∈ Word ran 𝑊) |
39 | 37, 38 | syl 17 |
. . 3
⊢ (𝜑 → 𝑊 ∈ Word ran 𝑊) |
40 | | f1ocnv 6614 |
. . . . 5
⊢ (𝑊:dom 𝑊–1-1-onto→ran
𝑊 → ◡𝑊:ran 𝑊–1-1-onto→dom
𝑊) |
41 | 11, 15, 40 | 3syl 18 |
. . . 4
⊢ (𝜑 → ◡𝑊:ran 𝑊–1-1-onto→dom
𝑊) |
42 | | f1of 6602 |
. . . 4
⊢ (◡𝑊:ran 𝑊–1-1-onto→dom
𝑊 → ◡𝑊:ran 𝑊⟶dom 𝑊) |
43 | 41, 42 | syl 17 |
. . 3
⊢ (𝜑 → ◡𝑊:ran 𝑊⟶dom 𝑊) |
44 | | cshco 14245 |
. . 3
⊢ ((𝑊 ∈ Word ran 𝑊 ∧ 1 ∈ ℤ ∧
◡𝑊:ran 𝑊⟶dom 𝑊) → (◡𝑊 ∘ (𝑊 cyclShift 1)) = ((◡𝑊 ∘ 𝑊) cyclShift 1)) |
45 | 39, 22, 43, 44 | syl3anc 1368 |
. 2
⊢ (𝜑 → (◡𝑊 ∘ (𝑊 cyclShift 1)) = ((◡𝑊 ∘ 𝑊) cyclShift 1)) |
46 | | cycpmconjslem1.2 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝑊) = 𝑃) |
47 | 46 | oveq2d 7166 |
. . . . . 6
⊢ (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑃)) |
48 | 26, 47 | eqtrd 2793 |
. . . . 5
⊢ (𝜑 → dom 𝑊 = (0..^𝑃)) |
49 | 48 | reseq2d 5823 |
. . . 4
⊢ (𝜑 → ( I ↾ dom 𝑊) = ( I ↾ (0..^𝑃))) |
50 | 17, 49 | eqtrd 2793 |
. . 3
⊢ (𝜑 → (◡𝑊 ∘ 𝑊) = ( I ↾ (0..^𝑃))) |
51 | 50 | oveq1d 7165 |
. 2
⊢ (𝜑 → ((◡𝑊 ∘ 𝑊) cyclShift 1) = (( I ↾ (0..^𝑃)) cyclShift
1)) |
52 | 33, 45, 51 | 3eqtrd 2797 |
1
⊢ (𝜑 → ((◡𝑊 ∘ (𝑀‘𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1)) |