Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjslem1 Structured version   Visualization version   GIF version

Theorem cycpmconjslem1 33174
Description: Lemma for cycpmconjs 33176. (Contributed by Thierry Arnoux, 14-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmconjslem1.d (𝜑𝐷𝑉)
cycpmconjslem1.w (𝜑𝑊 ∈ Word 𝐷)
cycpmconjslem1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmconjslem1.2 (𝜑 → (♯‘𝑊) = 𝑃)
Assertion
Ref Expression
cycpmconjslem1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))

Proof of Theorem cycpmconjslem1
StepHypRef Expression
1 resco 6270 . . . . 5 ((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) = (𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊))
21coeq1i 5870 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊)
3 ssid 4006 . . . . 5 ran 𝑊 ⊆ ran 𝑊
4 cores 6269 . . . . 5 (ran 𝑊 ⊆ ran 𝑊 → (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊))
53, 4ax-mp 5 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊)
6 coass 6285 . . . 4 ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
72, 5, 63eqtr3i 2773 . . 3 ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
8 cycpmconjs.m . . . . . . 7 𝑀 = (toCyc‘𝐷)
9 cycpmconjslem1.d . . . . . . 7 (𝜑𝐷𝑉)
10 cycpmconjslem1.w . . . . . . 7 (𝜑𝑊 ∈ Word 𝐷)
11 cycpmconjslem1.1 . . . . . . 7 (𝜑𝑊:dom 𝑊1-1𝐷)
128, 9, 10, 11tocycfvres1 33130 . . . . . 6 (𝜑 → ((𝑀𝑊) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ 𝑊))
1312coeq1d 5872 . . . . 5 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊))
14 coass 6285 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊))
15 f1f1orn 6859 . . . . . . . . 9 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
16 f1ococnv1 6877 . . . . . . . . 9 (𝑊:dom 𝑊1-1-onto→ran 𝑊 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1711, 15, 163syl 18 . . . . . . . 8 (𝜑 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1817coeq2d 5873 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) ∘ (𝑊𝑊)) = ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)))
19 coires1 6284 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)) = ((𝑊 cyclShift 1) ↾ dom 𝑊)
2018, 19eqtr2di 2794 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊)))
2114, 20eqtr4id 2796 . . . . 5 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ↾ dom 𝑊))
22 1zzd 12648 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
23 cshwfn 14839 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
2410, 22, 23syl2anc 584 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
25 wrddm 14559 . . . . . . . . 9 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
2610, 25syl 17 . . . . . . . 8 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2726fneq2d 6662 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) Fn dom 𝑊 ↔ (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))))
2824, 27mpbird 257 . . . . . 6 (𝜑 → (𝑊 cyclShift 1) Fn dom 𝑊)
29 fnresdm 6687 . . . . . 6 ((𝑊 cyclShift 1) Fn dom 𝑊 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3028, 29syl 17 . . . . 5 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3113, 21, 303eqtrd 2781 . . . 4 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (𝑊 cyclShift 1))
3231coeq2d 5873 . . 3 (𝜑 → (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊)) = (𝑊 ∘ (𝑊 cyclShift 1)))
337, 32eqtrid 2789 . 2 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (𝑊 cyclShift 1)))
34 wrdfn 14566 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
3510, 34syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
36 df-f 6565 . . . . 5 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊 ↔ (𝑊 Fn (0..^(♯‘𝑊)) ∧ ran 𝑊 ⊆ ran 𝑊))
3735, 3, 36sylanblrc 590 . . . 4 (𝜑𝑊:(0..^(♯‘𝑊))⟶ran 𝑊)
38 iswrdi 14556 . . . 4 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊𝑊 ∈ Word ran 𝑊)
3937, 38syl 17 . . 3 (𝜑𝑊 ∈ Word ran 𝑊)
40 f1ocnv 6860 . . . 4 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
41 f1of 6848 . . . 4 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4211, 15, 40, 414syl 19 . . 3 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
43 cshco 14875 . . 3 ((𝑊 ∈ Word ran 𝑊 ∧ 1 ∈ ℤ ∧ 𝑊:ran 𝑊⟶dom 𝑊) → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
4439, 22, 42, 43syl3anc 1373 . 2 (𝜑 → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
45 cycpmconjslem1.2 . . . . . . 7 (𝜑 → (♯‘𝑊) = 𝑃)
4645oveq2d 7447 . . . . . 6 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑃))
4726, 46eqtrd 2777 . . . . 5 (𝜑 → dom 𝑊 = (0..^𝑃))
4847reseq2d 5997 . . . 4 (𝜑 → ( I ↾ dom 𝑊) = ( I ↾ (0..^𝑃)))
4917, 48eqtrd 2777 . . 3 (𝜑 → (𝑊𝑊) = ( I ↾ (0..^𝑃)))
5049oveq1d 7446 . 2 (𝜑 → ((𝑊𝑊) cyclShift 1) = (( I ↾ (0..^𝑃)) cyclShift 1))
5133, 44, 503eqtrd 2781 1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3951  {csn 4626   I cid 5577  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  ccom 5689   Fn wfn 6556  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  cz 12613  ..^cfzo 13694  chash 14369  Word cword 14552   cyclShift ccsh 14826  SymGrpcsymg 19386  toCycctocyc 33126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-concat 14609  df-substr 14679  df-pfx 14709  df-csh 14827  df-tocyc 33127
This theorem is referenced by:  cycpmconjslem2  33175
  Copyright terms: Public domain W3C validator