Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjslem1 Structured version   Visualization version   GIF version

Theorem cycpmconjslem1 33118
Description: Lemma for cycpmconjs 33120. (Contributed by Thierry Arnoux, 14-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmconjslem1.d (𝜑𝐷𝑉)
cycpmconjslem1.w (𝜑𝑊 ∈ Word 𝐷)
cycpmconjslem1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmconjslem1.2 (𝜑 → (♯‘𝑊) = 𝑃)
Assertion
Ref Expression
cycpmconjslem1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))

Proof of Theorem cycpmconjslem1
StepHypRef Expression
1 resco 6226 . . . . 5 ((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) = (𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊))
21coeq1i 5826 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊)
3 ssid 3972 . . . . 5 ran 𝑊 ⊆ ran 𝑊
4 cores 6225 . . . . 5 (ran 𝑊 ⊆ ran 𝑊 → (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊))
53, 4ax-mp 5 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊)
6 coass 6241 . . . 4 ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
72, 5, 63eqtr3i 2761 . . 3 ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
8 cycpmconjs.m . . . . . . 7 𝑀 = (toCyc‘𝐷)
9 cycpmconjslem1.d . . . . . . 7 (𝜑𝐷𝑉)
10 cycpmconjslem1.w . . . . . . 7 (𝜑𝑊 ∈ Word 𝐷)
11 cycpmconjslem1.1 . . . . . . 7 (𝜑𝑊:dom 𝑊1-1𝐷)
128, 9, 10, 11tocycfvres1 33074 . . . . . 6 (𝜑 → ((𝑀𝑊) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ 𝑊))
1312coeq1d 5828 . . . . 5 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊))
14 coass 6241 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊))
15 f1f1orn 6814 . . . . . . . . 9 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
16 f1ococnv1 6832 . . . . . . . . 9 (𝑊:dom 𝑊1-1-onto→ran 𝑊 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1711, 15, 163syl 18 . . . . . . . 8 (𝜑 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1817coeq2d 5829 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) ∘ (𝑊𝑊)) = ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)))
19 coires1 6240 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)) = ((𝑊 cyclShift 1) ↾ dom 𝑊)
2018, 19eqtr2di 2782 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊)))
2114, 20eqtr4id 2784 . . . . 5 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ↾ dom 𝑊))
22 1zzd 12571 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
23 cshwfn 14773 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
2410, 22, 23syl2anc 584 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
25 wrddm 14493 . . . . . . . . 9 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
2610, 25syl 17 . . . . . . . 8 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2726fneq2d 6615 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) Fn dom 𝑊 ↔ (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))))
2824, 27mpbird 257 . . . . . 6 (𝜑 → (𝑊 cyclShift 1) Fn dom 𝑊)
29 fnresdm 6640 . . . . . 6 ((𝑊 cyclShift 1) Fn dom 𝑊 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3028, 29syl 17 . . . . 5 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3113, 21, 303eqtrd 2769 . . . 4 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (𝑊 cyclShift 1))
3231coeq2d 5829 . . 3 (𝜑 → (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊)) = (𝑊 ∘ (𝑊 cyclShift 1)))
337, 32eqtrid 2777 . 2 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (𝑊 cyclShift 1)))
34 wrdfn 14500 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
3510, 34syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
36 df-f 6518 . . . . 5 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊 ↔ (𝑊 Fn (0..^(♯‘𝑊)) ∧ ran 𝑊 ⊆ ran 𝑊))
3735, 3, 36sylanblrc 590 . . . 4 (𝜑𝑊:(0..^(♯‘𝑊))⟶ran 𝑊)
38 iswrdi 14489 . . . 4 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊𝑊 ∈ Word ran 𝑊)
3937, 38syl 17 . . 3 (𝜑𝑊 ∈ Word ran 𝑊)
40 f1ocnv 6815 . . . 4 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
41 f1of 6803 . . . 4 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4211, 15, 40, 414syl 19 . . 3 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
43 cshco 14809 . . 3 ((𝑊 ∈ Word ran 𝑊 ∧ 1 ∈ ℤ ∧ 𝑊:ran 𝑊⟶dom 𝑊) → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
4439, 22, 42, 43syl3anc 1373 . 2 (𝜑 → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
45 cycpmconjslem1.2 . . . . . . 7 (𝜑 → (♯‘𝑊) = 𝑃)
4645oveq2d 7406 . . . . . 6 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑃))
4726, 46eqtrd 2765 . . . . 5 (𝜑 → dom 𝑊 = (0..^𝑃))
4847reseq2d 5953 . . . 4 (𝜑 → ( I ↾ dom 𝑊) = ( I ↾ (0..^𝑃)))
4917, 48eqtrd 2765 . . 3 (𝜑 → (𝑊𝑊) = ( I ↾ (0..^𝑃)))
5049oveq1d 7405 . 2 (𝜑 → ((𝑊𝑊) cyclShift 1) = (( I ↾ (0..^𝑃)) cyclShift 1))
5133, 44, 503eqtrd 2769 1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  {csn 4592   I cid 5535  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  ccom 5645   Fn wfn 6509  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  cz 12536  ..^cfzo 13622  chash 14302  Word cword 14485   cyclShift ccsh 14760  SymGrpcsymg 19306  toCycctocyc 33070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613  df-pfx 14643  df-csh 14761  df-tocyc 33071
This theorem is referenced by:  cycpmconjslem2  33119
  Copyright terms: Public domain W3C validator