Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjslem1 Structured version   Visualization version   GIF version

Theorem cycpmconjslem1 33157
Description: Lemma for cycpmconjs 33159. (Contributed by Thierry Arnoux, 14-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmconjslem1.d (𝜑𝐷𝑉)
cycpmconjslem1.w (𝜑𝑊 ∈ Word 𝐷)
cycpmconjslem1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmconjslem1.2 (𝜑 → (♯‘𝑊) = 𝑃)
Assertion
Ref Expression
cycpmconjslem1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))

Proof of Theorem cycpmconjslem1
StepHypRef Expression
1 resco 6272 . . . . 5 ((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) = (𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊))
21coeq1i 5873 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊)
3 ssid 4018 . . . . 5 ran 𝑊 ⊆ ran 𝑊
4 cores 6271 . . . . 5 (ran 𝑊 ⊆ ran 𝑊 → (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊))
53, 4ax-mp 5 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊)
6 coass 6287 . . . 4 ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
72, 5, 63eqtr3i 2771 . . 3 ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
8 cycpmconjs.m . . . . . . 7 𝑀 = (toCyc‘𝐷)
9 cycpmconjslem1.d . . . . . . 7 (𝜑𝐷𝑉)
10 cycpmconjslem1.w . . . . . . 7 (𝜑𝑊 ∈ Word 𝐷)
11 cycpmconjslem1.1 . . . . . . 7 (𝜑𝑊:dom 𝑊1-1𝐷)
128, 9, 10, 11tocycfvres1 33113 . . . . . 6 (𝜑 → ((𝑀𝑊) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ 𝑊))
1312coeq1d 5875 . . . . 5 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊))
14 coass 6287 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊))
15 f1f1orn 6860 . . . . . . . . 9 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
16 f1ococnv1 6878 . . . . . . . . 9 (𝑊:dom 𝑊1-1-onto→ran 𝑊 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1711, 15, 163syl 18 . . . . . . . 8 (𝜑 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1817coeq2d 5876 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) ∘ (𝑊𝑊)) = ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)))
19 coires1 6286 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)) = ((𝑊 cyclShift 1) ↾ dom 𝑊)
2018, 19eqtr2di 2792 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊)))
2114, 20eqtr4id 2794 . . . . 5 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ↾ dom 𝑊))
22 1zzd 12646 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
23 cshwfn 14836 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
2410, 22, 23syl2anc 584 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
25 wrddm 14556 . . . . . . . . 9 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
2610, 25syl 17 . . . . . . . 8 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2726fneq2d 6663 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) Fn dom 𝑊 ↔ (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))))
2824, 27mpbird 257 . . . . . 6 (𝜑 → (𝑊 cyclShift 1) Fn dom 𝑊)
29 fnresdm 6688 . . . . . 6 ((𝑊 cyclShift 1) Fn dom 𝑊 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3028, 29syl 17 . . . . 5 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3113, 21, 303eqtrd 2779 . . . 4 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (𝑊 cyclShift 1))
3231coeq2d 5876 . . 3 (𝜑 → (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊)) = (𝑊 ∘ (𝑊 cyclShift 1)))
337, 32eqtrid 2787 . 2 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (𝑊 cyclShift 1)))
34 wrdfn 14563 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
3510, 34syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
36 df-f 6567 . . . . 5 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊 ↔ (𝑊 Fn (0..^(♯‘𝑊)) ∧ ran 𝑊 ⊆ ran 𝑊))
3735, 3, 36sylanblrc 590 . . . 4 (𝜑𝑊:(0..^(♯‘𝑊))⟶ran 𝑊)
38 iswrdi 14553 . . . 4 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊𝑊 ∈ Word ran 𝑊)
3937, 38syl 17 . . 3 (𝜑𝑊 ∈ Word ran 𝑊)
40 f1ocnv 6861 . . . 4 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
41 f1of 6849 . . . 4 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4211, 15, 40, 414syl 19 . . 3 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
43 cshco 14872 . . 3 ((𝑊 ∈ Word ran 𝑊 ∧ 1 ∈ ℤ ∧ 𝑊:ran 𝑊⟶dom 𝑊) → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
4439, 22, 42, 43syl3anc 1370 . 2 (𝜑 → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
45 cycpmconjslem1.2 . . . . . . 7 (𝜑 → (♯‘𝑊) = 𝑃)
4645oveq2d 7447 . . . . . 6 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑃))
4726, 46eqtrd 2775 . . . . 5 (𝜑 → dom 𝑊 = (0..^𝑃))
4847reseq2d 6000 . . . 4 (𝜑 → ( I ↾ dom 𝑊) = ( I ↾ (0..^𝑃)))
4917, 48eqtrd 2775 . . 3 (𝜑 → (𝑊𝑊) = ( I ↾ (0..^𝑃)))
5049oveq1d 7446 . 2 (𝜑 → ((𝑊𝑊) cyclShift 1) = (( I ↾ (0..^𝑃)) cyclShift 1))
5133, 44, 503eqtrd 2779 1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  {csn 4631   I cid 5582  ccnv 5688  dom cdm 5689  ran crn 5690  cres 5691  cima 5692  ccom 5693   Fn wfn 6558  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154  cz 12611  ..^cfzo 13691  chash 14366  Word cword 14549   cyclShift ccsh 14823  SymGrpcsymg 19401  toCycctocyc 33109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-hash 14367  df-word 14550  df-concat 14606  df-substr 14676  df-pfx 14706  df-csh 14824  df-tocyc 33110
This theorem is referenced by:  cycpmconjslem2  33158
  Copyright terms: Public domain W3C validator