Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjslem1 Structured version   Visualization version   GIF version

Theorem cycpmconjslem1 33111
Description: Lemma for cycpmconjs 33113. (Contributed by Thierry Arnoux, 14-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmconjslem1.d (𝜑𝐷𝑉)
cycpmconjslem1.w (𝜑𝑊 ∈ Word 𝐷)
cycpmconjslem1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmconjslem1.2 (𝜑 → (♯‘𝑊) = 𝑃)
Assertion
Ref Expression
cycpmconjslem1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))

Proof of Theorem cycpmconjslem1
StepHypRef Expression
1 resco 6223 . . . . 5 ((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) = (𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊))
21coeq1i 5823 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊)
3 ssid 3969 . . . . 5 ran 𝑊 ⊆ ran 𝑊
4 cores 6222 . . . . 5 (ran 𝑊 ⊆ ran 𝑊 → (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊))
53, 4ax-mp 5 . . . 4 (((𝑊 ∘ (𝑀𝑊)) ↾ ran 𝑊) ∘ 𝑊) = ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊)
6 coass 6238 . . . 4 ((𝑊 ∘ ((𝑀𝑊) ↾ ran 𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
72, 5, 63eqtr3i 2760 . . 3 ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊))
8 cycpmconjs.m . . . . . . 7 𝑀 = (toCyc‘𝐷)
9 cycpmconjslem1.d . . . . . . 7 (𝜑𝐷𝑉)
10 cycpmconjslem1.w . . . . . . 7 (𝜑𝑊 ∈ Word 𝐷)
11 cycpmconjslem1.1 . . . . . . 7 (𝜑𝑊:dom 𝑊1-1𝐷)
128, 9, 10, 11tocycfvres1 33067 . . . . . 6 (𝜑 → ((𝑀𝑊) ↾ ran 𝑊) = ((𝑊 cyclShift 1) ∘ 𝑊))
1312coeq1d 5825 . . . . 5 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊))
14 coass 6238 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊))
15 f1f1orn 6811 . . . . . . . . 9 (𝑊:dom 𝑊1-1𝐷𝑊:dom 𝑊1-1-onto→ran 𝑊)
16 f1ococnv1 6829 . . . . . . . . 9 (𝑊:dom 𝑊1-1-onto→ran 𝑊 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1711, 15, 163syl 18 . . . . . . . 8 (𝜑 → (𝑊𝑊) = ( I ↾ dom 𝑊))
1817coeq2d 5826 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) ∘ (𝑊𝑊)) = ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)))
19 coires1 6237 . . . . . . 7 ((𝑊 cyclShift 1) ∘ ( I ↾ dom 𝑊)) = ((𝑊 cyclShift 1) ↾ dom 𝑊)
2018, 19eqtr2di 2781 . . . . . 6 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = ((𝑊 cyclShift 1) ∘ (𝑊𝑊)))
2114, 20eqtr4id 2783 . . . . 5 (𝜑 → (((𝑊 cyclShift 1) ∘ 𝑊) ∘ 𝑊) = ((𝑊 cyclShift 1) ↾ dom 𝑊))
22 1zzd 12564 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
23 cshwfn 14766 . . . . . . . 8 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
2410, 22, 23syl2anc 584 . . . . . . 7 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
25 wrddm 14486 . . . . . . . . 9 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
2610, 25syl 17 . . . . . . . 8 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2726fneq2d 6612 . . . . . . 7 (𝜑 → ((𝑊 cyclShift 1) Fn dom 𝑊 ↔ (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))))
2824, 27mpbird 257 . . . . . 6 (𝜑 → (𝑊 cyclShift 1) Fn dom 𝑊)
29 fnresdm 6637 . . . . . 6 ((𝑊 cyclShift 1) Fn dom 𝑊 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3028, 29syl 17 . . . . 5 (𝜑 → ((𝑊 cyclShift 1) ↾ dom 𝑊) = (𝑊 cyclShift 1))
3113, 21, 303eqtrd 2768 . . . 4 (𝜑 → (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊) = (𝑊 cyclShift 1))
3231coeq2d 5826 . . 3 (𝜑 → (𝑊 ∘ (((𝑀𝑊) ↾ ran 𝑊) ∘ 𝑊)) = (𝑊 ∘ (𝑊 cyclShift 1)))
337, 32eqtrid 2776 . 2 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (𝑊 ∘ (𝑊 cyclShift 1)))
34 wrdfn 14493 . . . . . 6 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
3510, 34syl 17 . . . . 5 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
36 df-f 6515 . . . . 5 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊 ↔ (𝑊 Fn (0..^(♯‘𝑊)) ∧ ran 𝑊 ⊆ ran 𝑊))
3735, 3, 36sylanblrc 590 . . . 4 (𝜑𝑊:(0..^(♯‘𝑊))⟶ran 𝑊)
38 iswrdi 14482 . . . 4 (𝑊:(0..^(♯‘𝑊))⟶ran 𝑊𝑊 ∈ Word ran 𝑊)
3937, 38syl 17 . . 3 (𝜑𝑊 ∈ Word ran 𝑊)
40 f1ocnv 6812 . . . 4 (𝑊:dom 𝑊1-1-onto→ran 𝑊𝑊:ran 𝑊1-1-onto→dom 𝑊)
41 f1of 6800 . . . 4 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4211, 15, 40, 414syl 19 . . 3 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
43 cshco 14802 . . 3 ((𝑊 ∈ Word ran 𝑊 ∧ 1 ∈ ℤ ∧ 𝑊:ran 𝑊⟶dom 𝑊) → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
4439, 22, 42, 43syl3anc 1373 . 2 (𝜑 → (𝑊 ∘ (𝑊 cyclShift 1)) = ((𝑊𝑊) cyclShift 1))
45 cycpmconjslem1.2 . . . . . . 7 (𝜑 → (♯‘𝑊) = 𝑃)
4645oveq2d 7403 . . . . . 6 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑃))
4726, 46eqtrd 2764 . . . . 5 (𝜑 → dom 𝑊 = (0..^𝑃))
4847reseq2d 5950 . . . 4 (𝜑 → ( I ↾ dom 𝑊) = ( I ↾ (0..^𝑃)))
4917, 48eqtrd 2764 . . 3 (𝜑 → (𝑊𝑊) = ( I ↾ (0..^𝑃)))
5049oveq1d 7402 . 2 (𝜑 → ((𝑊𝑊) cyclShift 1) = (( I ↾ (0..^𝑃)) cyclShift 1))
5133, 44, 503eqtrd 2768 1 (𝜑 → ((𝑊 ∘ (𝑀𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  {csn 4589   I cid 5532  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  cz 12529  ..^cfzo 13615  chash 14295  Word cword 14478   cyclShift ccsh 14753  SymGrpcsymg 19299  toCycctocyc 33063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-hash 14296  df-word 14479  df-concat 14536  df-substr 14606  df-pfx 14636  df-csh 14754  df-tocyc 33064
This theorem is referenced by:  cycpmconjslem2  33112
  Copyright terms: Public domain W3C validator