Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvsinax Structured version   Visualization version   GIF version

Theorem dvsinax 42980
Description: Derivative exercise: the derivative with respect to y of sin(Ay), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvsinax (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Distinct variable group:   𝑦,𝐴

Proof of Theorem dvsinax
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sinf 15562 . . . . . 6 sin:ℂ⟶ℂ
21a1i 11 . . . . 5 (𝐴 ∈ ℂ → sin:ℂ⟶ℂ)
3 mulcl 10692 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
43fmpttd 6883 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ)
5 fcompt 6899 . . . . 5 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ) → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
62, 4, 5syl2anc 587 . . . 4 (𝐴 ∈ ℂ → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
7 eqidd 2739 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
8 oveq2 7172 . . . . . . . 8 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
98adantl 485 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → (𝐴 · 𝑦) = (𝐴 · 𝑤))
10 simpr 488 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ ℂ)
11 mulcl 10692 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 𝑤) ∈ ℂ)
127, 9, 10, 11fvmptd 6776 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤) = (𝐴 · 𝑤))
1312fveq2d 6672 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (sin‘(𝐴 · 𝑤)))
1413mpteq2dva 5122 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))))
15 oveq2 7172 . . . . . . 7 (𝑤 = 𝑦 → (𝐴 · 𝑤) = (𝐴 · 𝑦))
1615fveq2d 6672 . . . . . 6 (𝑤 = 𝑦 → (sin‘(𝐴 · 𝑤)) = (sin‘(𝐴 · 𝑦)))
1716cbvmptv 5130 . . . . 5 (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))
1817a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
196, 14, 183eqtrrd 2778 . . 3 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) = (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
2019oveq2d 7180 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
21 cnelprrecn 10701 . . . 4 ℂ ∈ {ℝ, ℂ}
2221a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
23 dvsin 24726 . . . . . 6 (ℂ D sin) = cos
2423dmeqi 5741 . . . . 5 dom (ℂ D sin) = dom cos
25 cosf 15563 . . . . . 6 cos:ℂ⟶ℂ
2625fdmi 6510 . . . . 5 dom cos = ℂ
2724, 26eqtri 2761 . . . 4 dom (ℂ D sin) = ℂ
2827a1i 11 . . 3 (𝐴 ∈ ℂ → dom (ℂ D sin) = ℂ)
29 id 22 . . . . . . . . . . 11 (𝑦 = 𝑤𝑦 = 𝑤)
3029cbvmptv 5130 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑤 ∈ ℂ ↦ 𝑤)
3130oveq2i 7175 . . . . . . . . 9 ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤))
3231a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)))
33 cnex 10689 . . . . . . . . . . 11 ℂ ∈ V
3433a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → ℂ ∈ V)
35 snex 5295 . . . . . . . . . . 11 {𝐴} ∈ V
3635a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → {𝐴} ∈ V)
3734, 36xpexd 7486 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ V)
3833mptex 6990 . . . . . . . . . 10 (𝑤 ∈ ℂ ↦ 𝑤) ∈ V
3938a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ V)
40 offval3 7701 . . . . . . . . 9 (((ℂ × {𝐴}) ∈ V ∧ (𝑤 ∈ ℂ ↦ 𝑤) ∈ V) → ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
4137, 39, 40syl2anc 587 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
42 fconst6g 6561 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
4342fdmd 6509 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (ℂ × {𝐴}) = ℂ)
44 eqid 2738 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤)
45 id 22 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
4644, 45fmpti 6880 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ 𝑤):ℂ⟶ℂ
4746fdmi 6510 . . . . . . . . . . . . 13 dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ
4847a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ)
4943, 48ineq12d 4102 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = (ℂ ∩ ℂ))
50 inidm 4107 . . . . . . . . . . . 12 (ℂ ∩ ℂ) = ℂ
5150a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ ∩ ℂ) = ℂ)
5249, 51eqtrd 2773 . . . . . . . . . 10 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = ℂ)
5352mpteq1d 5116 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
54 fvconst2g 6968 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ × {𝐴})‘𝑦) = 𝐴)
55 eqidd 2739 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤))
56 simpr 488 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑤 = 𝑦) → 𝑤 = 𝑦)
57 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
5855, 56, 57, 57fvmptd 6776 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
5958adantl 485 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
6054, 59oveq12d 7182 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦)) = (𝐴 · 𝑦))
6160mpteq2dva 5122 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6253, 61eqtrd 2773 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6332, 41, 623eqtrrd 2778 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)))
6463oveq2d 7180 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (ℂ D ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦))))
65 eqid 2738 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑦 ∈ ℂ ↦ 𝑦)
6665, 57fmpti 6880 . . . . . . . 8 (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ
6766a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ)
68 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
6921a1i 11 . . . . . . . . . . . 12 (⊤ → ℂ ∈ {ℝ, ℂ})
7069dvmptid 24701 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
7170mptru 1549 . . . . . . . . . 10 (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)
7271dmeqi 5741 . . . . . . . . 9 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = dom (𝑦 ∈ ℂ ↦ 1)
73 ax-1cn 10666 . . . . . . . . . . . 12 1 ∈ ℂ
7473rgenw 3065 . . . . . . . . . . 11 𝑦 ∈ ℂ 1 ∈ ℂ
75 eqid 2738 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1)
7675fmpt 6878 . . . . . . . . . . 11 (∀𝑦 ∈ ℂ 1 ∈ ℂ ↔ (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ)
7774, 76mpbi 233 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ
7877fdmi 6510 . . . . . . . . 9 dom (𝑦 ∈ ℂ ↦ 1) = ℂ
7972, 78eqtri 2761 . . . . . . . 8 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ
8079a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ)
8122, 67, 68, 80dvcmulf 24689 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦))) = ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8264, 81eqtrd 2773 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8382dmeqd 5742 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
84 ovexd 7199 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V)
85 offval3 7701 . . . . . 6 (((ℂ × {𝐴}) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V) → ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8637, 84, 85syl2anc 587 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8786dmeqd 5742 . . . 4 (𝐴 ∈ ℂ → dom ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8843, 80ineq12d 4102 . . . . . . . 8 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (ℂ ∩ ℂ))
8988, 51eqtrd 2773 . . . . . . 7 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = ℂ)
9089mpteq1d 5116 . . . . . 6 (𝐴 ∈ ℂ → (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
9190dmeqd 5742 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
92 eqid 2738 . . . . . 6 (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)))
93 fvconst2g 6968 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ × {𝐴})‘𝑤) = 𝐴)
9471fveq1i 6669 . . . . . . . . . . 11 ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤)
9594a1i 11 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤))
96 eqidd 2739 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1))
97 eqidd 2739 . . . . . . . . . . 11 ((𝑤 ∈ ℂ ∧ 𝑦 = 𝑤) → 1 = 1)
9873a1i 11 . . . . . . . . . . 11 (𝑤 ∈ ℂ → 1 ∈ ℂ)
9996, 97, 45, 98fvmptd 6776 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((𝑦 ∈ ℂ ↦ 1)‘𝑤) = 1)
10095, 99eqtrd 2773 . . . . . . . . 9 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
101100adantl 485 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
10293, 101oveq12d 7182 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) = (𝐴 · 1))
103 mulcl 10692 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
10473, 103mpan2 691 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 · 1) ∈ ℂ)
105104adantr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
106102, 105eqeltrd 2833 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) ∈ ℂ)
10792, 106dmmptd 6476 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
10891, 107eqtrd 2773 . . . 4 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
10983, 87, 1083eqtrd 2777 . . 3 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
11022, 22, 2, 4, 28, 109dvcof 24692 . 2 (𝐴 ∈ ℂ → (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
11123a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D sin) = cos)
112 coscn 25184 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
113112a1i 11 . . . . . 6 (𝐴 ∈ ℂ → cos ∈ (ℂ–cn→ℂ))
114111, 113eqeltrd 2833 . . . . 5 (𝐴 ∈ ℂ → (ℂ D sin) ∈ (ℂ–cn→ℂ))
11533mptex 6990 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V
116115a1i 11 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V)
117 coexg 7653 . . . . 5 (((ℂ D sin) ∈ (ℂ–cn→ℂ) ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
118114, 116, 117syl2anc 587 . . . 4 (𝐴 ∈ ℂ → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
119 ovexd 7199 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
120 offval3 7701 . . . 4 ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
121118, 119, 120syl2anc 587 . . 3 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
1224frnd 6506 . . . . . . . . 9 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ ℂ)
123122, 28sseqtrrd 3916 . . . . . . . 8 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin))
124 dmcosseq 5810 . . . . . . . 8 (ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin) → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
125123, 124syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
126 ovex 7197 . . . . . . . . 9 (𝐴 · 𝑦) ∈ V
127 eqid 2738 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))
128126, 127dmmpti 6475 . . . . . . . 8 dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ
129128a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ)
130125, 129eqtrd 2773 . . . . . 6 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
131130, 109ineq12d 4102 . . . . 5 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (ℂ ∩ ℂ))
132131, 51eqtrd 2773 . . . 4 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = ℂ)
133132mpteq1d 5116 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
13411coscld 15569 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘(𝐴 · 𝑤)) ∈ ℂ)
135 simpl 486 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝐴 ∈ ℂ)
136134, 135mulcomd 10733 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos‘(𝐴 · 𝑤)) · 𝐴) = (𝐴 · (cos‘(𝐴 · 𝑤))))
137136mpteq2dva 5122 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
13823coeq1i 5696 . . . . . . . . 9 ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
139138a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
140139fveq1d 6670 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))
1414ffund 6502 . . . . . . . . 9 (𝐴 ∈ ℂ → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
142141adantr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
14310, 128eleqtrrdi 2844 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
144 fvco 6760 . . . . . . . 8 ((Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∧ 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
145142, 143, 144syl2anc 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
14612fveq2d 6672 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (cos‘(𝐴 · 𝑤)))
147140, 145, 1463eqtrd 2777 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘(𝐴 · 𝑤)))
148 simpl 486 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
149 0cnd 10705 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 0 ∈ ℂ)
15022, 68dvmptc 24702 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝐴)) = (𝑦 ∈ ℂ ↦ 0))
151 simpr 488 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
15273a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
15371a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
15422, 148, 149, 150, 151, 152, 153dvmptmul 24705 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))))
155151mul02d 10909 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · 𝑦) = 0)
156148mulid2d 10730 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 · 𝐴) = 𝐴)
157155, 156oveq12d 7182 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
158148addid2d 10912 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
159157, 158eqtrd 2773 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
160159mpteq2dva 5122 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))) = (𝑦 ∈ ℂ ↦ 𝐴))
161154, 160eqtrd 2773 . . . . . . . 8 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
162161adantr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
163 eqidd 2739 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → 𝐴 = 𝐴)
164162, 163, 10, 135fvmptd 6776 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = 𝐴)
165147, 164oveq12d 7182 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤)) = ((cos‘(𝐴 · 𝑤)) · 𝐴))
166165mpteq2dva 5122 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)))
1678fveq2d 6672 . . . . . . 7 (𝑦 = 𝑤 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑤)))
168167oveq2d 7180 . . . . . 6 (𝑦 = 𝑤 → (𝐴 · (cos‘(𝐴 · 𝑦))) = (𝐴 · (cos‘(𝐴 · 𝑤))))
169168cbvmptv 5130 . . . . 5 (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤))))
170169a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
171137, 166, 1703eqtr4d 2783 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
172121, 133, 1713eqtrd 2777 . 2 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
17320, 110, 1723eqtrd 2777 1 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wtru 1543  wcel 2113  wral 3053  Vcvv 3397  cin 3840  wss 3841  {csn 4513  {cpr 4515  cmpt 5107   × cxp 5517  dom cdm 5519  ran crn 5520  ccom 5523  Fun wfun 6327  wf 6329  cfv 6333  (class class class)co 7164  f cof 7417  cc 10606  cr 10607  0cc0 10608  1c1 10609   + caddc 10611   · cmul 10613  sincsin 15502  cosccos 15503  cnccncf 23621   D cdv 24607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686  ax-addf 10687  ax-mulf 10688
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-om 7594  df-1st 7707  df-2nd 7708  df-supp 7850  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-er 8313  df-map 8432  df-pm 8433  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fsupp 8900  df-fi 8941  df-sup 8972  df-inf 8973  df-oi 9040  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-ico 12820  df-icc 12821  df-fz 12975  df-fzo 13118  df-fl 13246  df-seq 13454  df-exp 13515  df-fac 13719  df-bc 13748  df-hash 13776  df-shft 14509  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-limsup 14911  df-clim 14928  df-rlim 14929  df-sum 15129  df-ef 15506  df-sin 15508  df-cos 15509  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-starv 16676  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-hom 16685  df-cco 16686  df-rest 16792  df-topn 16793  df-0g 16811  df-gsum 16812  df-topgen 16813  df-pt 16814  df-prds 16817  df-xrs 16871  df-qtop 16876  df-imas 16877  df-xps 16879  df-mre 16953  df-mrc 16954  df-acs 16956  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-mulg 18336  df-cntz 18558  df-cmn 19019  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-fbas 20207  df-fg 20208  df-cnfld 20211  df-top 21638  df-topon 21655  df-topsp 21677  df-bases 21690  df-cld 21763  df-ntr 21764  df-cls 21765  df-nei 21842  df-lp 21880  df-perf 21881  df-cn 21971  df-cnp 21972  df-haus 22059  df-tx 22306  df-hmeo 22499  df-fil 22590  df-fm 22682  df-flim 22683  df-flf 22684  df-xms 23066  df-ms 23067  df-tms 23068  df-cncf 23623  df-limc 24610  df-dv 24611
This theorem is referenced by:  dvasinbx  42987  itgcoscmulx  43036  dirkeritg  43169  dirkercncflem2  43171
  Copyright terms: Public domain W3C validator