Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvsinax Structured version   Visualization version   GIF version

Theorem dvsinax 45950
Description: Derivative exercise: the derivative with respect to y of sin(Ay), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvsinax (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Distinct variable group:   𝑦,𝐴

Proof of Theorem dvsinax
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sinf 16030 . . . . . 6 sin:ℂ⟶ℂ
21a1i 11 . . . . 5 (𝐴 ∈ ℂ → sin:ℂ⟶ℂ)
3 mulcl 11087 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
43fmpttd 7048 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ)
5 fcompt 7066 . . . . 5 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ) → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
62, 4, 5syl2anc 584 . . . 4 (𝐴 ∈ ℂ → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
7 eqidd 2732 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
8 oveq2 7354 . . . . . . . 8 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
98adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → (𝐴 · 𝑦) = (𝐴 · 𝑤))
10 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ ℂ)
11 mulcl 11087 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 𝑤) ∈ ℂ)
127, 9, 10, 11fvmptd 6936 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤) = (𝐴 · 𝑤))
1312fveq2d 6826 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (sin‘(𝐴 · 𝑤)))
1413mpteq2dva 5184 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))))
15 oveq2 7354 . . . . . . 7 (𝑤 = 𝑦 → (𝐴 · 𝑤) = (𝐴 · 𝑦))
1615fveq2d 6826 . . . . . 6 (𝑤 = 𝑦 → (sin‘(𝐴 · 𝑤)) = (sin‘(𝐴 · 𝑦)))
1716cbvmptv 5195 . . . . 5 (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))
1817a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
196, 14, 183eqtrrd 2771 . . 3 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) = (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
2019oveq2d 7362 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
21 cnelprrecn 11096 . . . 4 ℂ ∈ {ℝ, ℂ}
2221a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
23 dvsin 25911 . . . . . 6 (ℂ D sin) = cos
2423dmeqi 5844 . . . . 5 dom (ℂ D sin) = dom cos
25 cosf 16031 . . . . . 6 cos:ℂ⟶ℂ
2625fdmi 6662 . . . . 5 dom cos = ℂ
2724, 26eqtri 2754 . . . 4 dom (ℂ D sin) = ℂ
2827a1i 11 . . 3 (𝐴 ∈ ℂ → dom (ℂ D sin) = ℂ)
29 id 22 . . . . . . . . . . 11 (𝑦 = 𝑤𝑦 = 𝑤)
3029cbvmptv 5195 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑤 ∈ ℂ ↦ 𝑤)
3130oveq2i 7357 . . . . . . . . 9 ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤))
3231a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)))
33 cnex 11084 . . . . . . . . . . 11 ℂ ∈ V
3433a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → ℂ ∈ V)
35 snex 5374 . . . . . . . . . . 11 {𝐴} ∈ V
3635a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → {𝐴} ∈ V)
3734, 36xpexd 7684 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ V)
3833mptex 7157 . . . . . . . . . 10 (𝑤 ∈ ℂ ↦ 𝑤) ∈ V
3938a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ V)
40 offval3 7914 . . . . . . . . 9 (((ℂ × {𝐴}) ∈ V ∧ (𝑤 ∈ ℂ ↦ 𝑤) ∈ V) → ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
4137, 39, 40syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
42 fconst6g 6712 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
4342fdmd 6661 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (ℂ × {𝐴}) = ℂ)
44 eqid 2731 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤)
45 id 22 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
4644, 45fmpti 7045 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ 𝑤):ℂ⟶ℂ
4746fdmi 6662 . . . . . . . . . . . . 13 dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ
4847a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ)
4943, 48ineq12d 4171 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = (ℂ ∩ ℂ))
50 inidm 4177 . . . . . . . . . . . 12 (ℂ ∩ ℂ) = ℂ
5150a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ ∩ ℂ) = ℂ)
5249, 51eqtrd 2766 . . . . . . . . . 10 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = ℂ)
5352mpteq1d 5181 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
54 fvconst2g 7136 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ × {𝐴})‘𝑦) = 𝐴)
55 eqidd 2732 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤))
56 simpr 484 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑤 = 𝑦) → 𝑤 = 𝑦)
57 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
5855, 56, 57, 57fvmptd 6936 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
5958adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
6054, 59oveq12d 7364 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦)) = (𝐴 · 𝑦))
6160mpteq2dva 5184 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6253, 61eqtrd 2766 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6332, 41, 623eqtrrd 2771 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)))
6463oveq2d 7362 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (ℂ D ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦))))
65 eqid 2731 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑦 ∈ ℂ ↦ 𝑦)
6665, 57fmpti 7045 . . . . . . . 8 (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ
6766a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ)
68 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
6921a1i 11 . . . . . . . . . . . 12 (⊤ → ℂ ∈ {ℝ, ℂ})
7069dvmptid 25886 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
7170mptru 1548 . . . . . . . . . 10 (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)
7271dmeqi 5844 . . . . . . . . 9 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = dom (𝑦 ∈ ℂ ↦ 1)
73 ax-1cn 11061 . . . . . . . . . . . 12 1 ∈ ℂ
7473rgenw 3051 . . . . . . . . . . 11 𝑦 ∈ ℂ 1 ∈ ℂ
75 eqid 2731 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1)
7675fmpt 7043 . . . . . . . . . . 11 (∀𝑦 ∈ ℂ 1 ∈ ℂ ↔ (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ)
7774, 76mpbi 230 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ
7877fdmi 6662 . . . . . . . . 9 dom (𝑦 ∈ ℂ ↦ 1) = ℂ
7972, 78eqtri 2754 . . . . . . . 8 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ
8079a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ)
8122, 67, 68, 80dvcmulf 25873 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦))) = ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8264, 81eqtrd 2766 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8382dmeqd 5845 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
84 ovexd 7381 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V)
85 offval3 7914 . . . . . 6 (((ℂ × {𝐴}) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V) → ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8637, 84, 85syl2anc 584 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8786dmeqd 5845 . . . 4 (𝐴 ∈ ℂ → dom ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8843, 80ineq12d 4171 . . . . . . . 8 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (ℂ ∩ ℂ))
8988, 51eqtrd 2766 . . . . . . 7 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = ℂ)
9089mpteq1d 5181 . . . . . 6 (𝐴 ∈ ℂ → (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
9190dmeqd 5845 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
92 eqid 2731 . . . . . 6 (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)))
93 fvconst2g 7136 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ × {𝐴})‘𝑤) = 𝐴)
9471fveq1i 6823 . . . . . . . . . . 11 ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤)
9594a1i 11 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤))
96 eqidd 2732 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1))
97 eqidd 2732 . . . . . . . . . . 11 ((𝑤 ∈ ℂ ∧ 𝑦 = 𝑤) → 1 = 1)
9873a1i 11 . . . . . . . . . . 11 (𝑤 ∈ ℂ → 1 ∈ ℂ)
9996, 97, 45, 98fvmptd 6936 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((𝑦 ∈ ℂ ↦ 1)‘𝑤) = 1)
10095, 99eqtrd 2766 . . . . . . . . 9 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
101100adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
10293, 101oveq12d 7364 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) = (𝐴 · 1))
103 mulcl 11087 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
10473, 103mpan2 691 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 · 1) ∈ ℂ)
105104adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
106102, 105eqeltrd 2831 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) ∈ ℂ)
10792, 106dmmptd 6626 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
10891, 107eqtrd 2766 . . . 4 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
10983, 87, 1083eqtrd 2770 . . 3 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
11022, 22, 2, 4, 28, 109dvcof 25877 . 2 (𝐴 ∈ ℂ → (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
11123a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D sin) = cos)
112 coscn 26380 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
113112a1i 11 . . . . . 6 (𝐴 ∈ ℂ → cos ∈ (ℂ–cn→ℂ))
114111, 113eqeltrd 2831 . . . . 5 (𝐴 ∈ ℂ → (ℂ D sin) ∈ (ℂ–cn→ℂ))
11533mptex 7157 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V
116115a1i 11 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V)
117 coexg 7859 . . . . 5 (((ℂ D sin) ∈ (ℂ–cn→ℂ) ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
118114, 116, 117syl2anc 584 . . . 4 (𝐴 ∈ ℂ → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
119 ovexd 7381 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
120 offval3 7914 . . . 4 ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
121118, 119, 120syl2anc 584 . . 3 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
1224frnd 6659 . . . . . . . . 9 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ ℂ)
123122, 28sseqtrrd 3972 . . . . . . . 8 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin))
124 dmcosseq 5917 . . . . . . . 8 (ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin) → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
125123, 124syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
126 ovex 7379 . . . . . . . . 9 (𝐴 · 𝑦) ∈ V
127 eqid 2731 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))
128126, 127dmmpti 6625 . . . . . . . 8 dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ
129128a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ)
130125, 129eqtrd 2766 . . . . . 6 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
131130, 109ineq12d 4171 . . . . 5 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (ℂ ∩ ℂ))
132131, 51eqtrd 2766 . . . 4 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = ℂ)
133132mpteq1d 5181 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
13411coscld 16037 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘(𝐴 · 𝑤)) ∈ ℂ)
135 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝐴 ∈ ℂ)
136134, 135mulcomd 11130 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos‘(𝐴 · 𝑤)) · 𝐴) = (𝐴 · (cos‘(𝐴 · 𝑤))))
137136mpteq2dva 5184 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
13823coeq1i 5799 . . . . . . . . 9 ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
139138a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
140139fveq1d 6824 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))
1414ffund 6655 . . . . . . . . 9 (𝐴 ∈ ℂ → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
142141adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
14310, 128eleqtrrdi 2842 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
144 fvco 6920 . . . . . . . 8 ((Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∧ 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
145142, 143, 144syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
14612fveq2d 6826 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (cos‘(𝐴 · 𝑤)))
147140, 145, 1463eqtrd 2770 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘(𝐴 · 𝑤)))
148 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
149 0cnd 11102 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 0 ∈ ℂ)
15022, 68dvmptc 25887 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝐴)) = (𝑦 ∈ ℂ ↦ 0))
151 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
15273a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
15371a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
15422, 148, 149, 150, 151, 152, 153dvmptmul 25890 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))))
155151mul02d 11308 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · 𝑦) = 0)
156148mullidd 11127 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 · 𝐴) = 𝐴)
157155, 156oveq12d 7364 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
158148addlidd 11311 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
159157, 158eqtrd 2766 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
160159mpteq2dva 5184 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))) = (𝑦 ∈ ℂ ↦ 𝐴))
161154, 160eqtrd 2766 . . . . . . . 8 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
162161adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
163 eqidd 2732 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → 𝐴 = 𝐴)
164162, 163, 10, 135fvmptd 6936 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = 𝐴)
165147, 164oveq12d 7364 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤)) = ((cos‘(𝐴 · 𝑤)) · 𝐴))
166165mpteq2dva 5184 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)))
1678fveq2d 6826 . . . . . . 7 (𝑦 = 𝑤 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑤)))
168167oveq2d 7362 . . . . . 6 (𝑦 = 𝑤 → (𝐴 · (cos‘(𝐴 · 𝑦))) = (𝐴 · (cos‘(𝐴 · 𝑤))))
169168cbvmptv 5195 . . . . 5 (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤))))
170169a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
171137, 166, 1703eqtr4d 2776 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
172121, 133, 1713eqtrd 2770 . 2 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
17320, 110, 1723eqtrd 2770 1 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wtru 1542  wcel 2111  wral 3047  Vcvv 3436  cin 3901  wss 3902  {csn 4576  {cpr 4578  cmpt 5172   × cxp 5614  dom cdm 5616  ran crn 5617  ccom 5620  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  sincsin 15967  cosccos 15968  cnccncf 24794   D cdv 25789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793
This theorem is referenced by:  dvasinbx  45957  itgcoscmulx  46006  dirkeritg  46139  dirkercncflem2  46141
  Copyright terms: Public domain W3C validator