Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvsinax Structured version   Visualization version   GIF version

Theorem dvsinax 45928
Description: Derivative exercise: the derivative with respect to y of sin(Ay), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dvsinax (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Distinct variable group:   𝑦,𝐴

Proof of Theorem dvsinax
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sinf 16160 . . . . . 6 sin:ℂ⟶ℂ
21a1i 11 . . . . 5 (𝐴 ∈ ℂ → sin:ℂ⟶ℂ)
3 mulcl 11239 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
43fmpttd 7135 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ)
5 fcompt 7153 . . . . 5 ((sin:ℂ⟶ℂ ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)):ℂ⟶ℂ) → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
62, 4, 5syl2anc 584 . . . 4 (𝐴 ∈ ℂ → (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))))
7 eqidd 2738 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
8 oveq2 7439 . . . . . . . 8 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
98adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → (𝐴 · 𝑦) = (𝐴 · 𝑤))
10 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ ℂ)
11 mulcl 11239 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 𝑤) ∈ ℂ)
127, 9, 10, 11fvmptd 7023 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤) = (𝐴 · 𝑤))
1312fveq2d 6910 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (sin‘(𝐴 · 𝑤)))
1413mpteq2dva 5242 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))))
15 oveq2 7439 . . . . . . 7 (𝑤 = 𝑦 → (𝐴 · 𝑤) = (𝐴 · 𝑦))
1615fveq2d 6910 . . . . . 6 (𝑤 = 𝑦 → (sin‘(𝐴 · 𝑤)) = (sin‘(𝐴 · 𝑦)))
1716cbvmptv 5255 . . . . 5 (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))
1817a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ (sin‘(𝐴 · 𝑤))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
196, 14, 183eqtrrd 2782 . . 3 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))) = (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
2019oveq2d 7447 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
21 cnelprrecn 11248 . . . 4 ℂ ∈ {ℝ, ℂ}
2221a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
23 dvsin 26020 . . . . . 6 (ℂ D sin) = cos
2423dmeqi 5915 . . . . 5 dom (ℂ D sin) = dom cos
25 cosf 16161 . . . . . 6 cos:ℂ⟶ℂ
2625fdmi 6747 . . . . 5 dom cos = ℂ
2724, 26eqtri 2765 . . . 4 dom (ℂ D sin) = ℂ
2827a1i 11 . . 3 (𝐴 ∈ ℂ → dom (ℂ D sin) = ℂ)
29 id 22 . . . . . . . . . . 11 (𝑦 = 𝑤𝑦 = 𝑤)
3029cbvmptv 5255 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑤 ∈ ℂ ↦ 𝑤)
3130oveq2i 7442 . . . . . . . . 9 ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤))
3231a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)))
33 cnex 11236 . . . . . . . . . . 11 ℂ ∈ V
3433a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → ℂ ∈ V)
35 snex 5436 . . . . . . . . . . 11 {𝐴} ∈ V
3635a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → {𝐴} ∈ V)
3734, 36xpexd 7771 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ × {𝐴}) ∈ V)
3833mptex 7243 . . . . . . . . . 10 (𝑤 ∈ ℂ ↦ 𝑤) ∈ V
3938a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ V)
40 offval3 8007 . . . . . . . . 9 (((ℂ × {𝐴}) ∈ V ∧ (𝑤 ∈ ℂ ↦ 𝑤) ∈ V) → ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
4137, 39, 40syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (𝑤 ∈ ℂ ↦ 𝑤)) = (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
42 fconst6g 6797 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
4342fdmd 6746 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (ℂ × {𝐴}) = ℂ)
44 eqid 2737 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤)
45 id 22 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → 𝑤 ∈ ℂ)
4644, 45fmpti 7132 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ ↦ 𝑤):ℂ⟶ℂ
4746fdmi 6747 . . . . . . . . . . . . 13 dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ
4847a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ 𝑤) = ℂ)
4943, 48ineq12d 4221 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = (ℂ ∩ ℂ))
50 inidm 4227 . . . . . . . . . . . 12 (ℂ ∩ ℂ) = ℂ
5150a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ ∩ ℂ) = ℂ)
5249, 51eqtrd 2777 . . . . . . . . . 10 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) = ℂ)
5352mpteq1d 5237 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))))
54 fvconst2g 7222 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((ℂ × {𝐴})‘𝑦) = 𝐴)
55 eqidd 2738 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑤 ∈ ℂ ↦ 𝑤) = (𝑤 ∈ ℂ ↦ 𝑤))
56 simpr 484 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑤 = 𝑦) → 𝑤 = 𝑦)
57 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
5855, 56, 57, 57fvmptd 7023 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
5958adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦) = 𝑦)
6054, 59oveq12d 7449 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦)) = (𝐴 · 𝑦))
6160mpteq2dva 5242 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6253, 61eqtrd 2777 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ (dom (ℂ × {𝐴}) ∩ dom (𝑤 ∈ ℂ ↦ 𝑤)) ↦ (((ℂ × {𝐴})‘𝑦) · ((𝑤 ∈ ℂ ↦ 𝑤)‘𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
6332, 41, 623eqtrrd 2782 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦)))
6463oveq2d 7447 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (ℂ D ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦))))
65 eqid 2737 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ 𝑦) = (𝑦 ∈ ℂ ↦ 𝑦)
6665, 57fmpti 7132 . . . . . . . 8 (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ
6766a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦):ℂ⟶ℂ)
68 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
6921a1i 11 . . . . . . . . . . . 12 (⊤ → ℂ ∈ {ℝ, ℂ})
7069dvmptid 25995 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
7170mptru 1547 . . . . . . . . . 10 (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)
7271dmeqi 5915 . . . . . . . . 9 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = dom (𝑦 ∈ ℂ ↦ 1)
73 ax-1cn 11213 . . . . . . . . . . . 12 1 ∈ ℂ
7473rgenw 3065 . . . . . . . . . . 11 𝑦 ∈ ℂ 1 ∈ ℂ
75 eqid 2737 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1)
7675fmpt 7130 . . . . . . . . . . 11 (∀𝑦 ∈ ℂ 1 ∈ ℂ ↔ (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ)
7774, 76mpbi 230 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ 1):ℂ⟶ℂ
7877fdmi 6747 . . . . . . . . 9 dom (𝑦 ∈ ℂ ↦ 1) = ℂ
7972, 78eqtri 2765 . . . . . . . 8 dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ
8079a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = ℂ)
8122, 67, 68, 80dvcmulf 25982 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D ((ℂ × {𝐴}) ∘f · (𝑦 ∈ ℂ ↦ 𝑦))) = ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8264, 81eqtrd 2777 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
8382dmeqd 5916 . . . 4 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))))
84 ovexd 7466 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V)
85 offval3 8007 . . . . . 6 (((ℂ × {𝐴}) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) ∈ V) → ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8637, 84, 85syl2anc 584 . . . . 5 (𝐴 ∈ ℂ → ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8786dmeqd 5916 . . . 4 (𝐴 ∈ ℂ → dom ((ℂ × {𝐴}) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
8843, 80ineq12d 4221 . . . . . . . 8 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = (ℂ ∩ ℂ))
8988, 51eqtrd 2777 . . . . . . 7 (𝐴 ∈ ℂ → (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) = ℂ)
9089mpteq1d 5237 . . . . . 6 (𝐴 ∈ ℂ → (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
9190dmeqd 5916 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))))
92 eqid 2737 . . . . . 6 (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)))
93 fvconst2g 7222 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ × {𝐴})‘𝑤) = 𝐴)
9471fveq1i 6907 . . . . . . . . . . 11 ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤)
9594a1i 11 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = ((𝑦 ∈ ℂ ↦ 1)‘𝑤))
96 eqidd 2738 . . . . . . . . . . 11 (𝑤 ∈ ℂ → (𝑦 ∈ ℂ ↦ 1) = (𝑦 ∈ ℂ ↦ 1))
97 eqidd 2738 . . . . . . . . . . 11 ((𝑤 ∈ ℂ ∧ 𝑦 = 𝑤) → 1 = 1)
9873a1i 11 . . . . . . . . . . 11 (𝑤 ∈ ℂ → 1 ∈ ℂ)
9996, 97, 45, 98fvmptd 7023 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((𝑦 ∈ ℂ ↦ 1)‘𝑤) = 1)
10095, 99eqtrd 2777 . . . . . . . . 9 (𝑤 ∈ ℂ → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
101100adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤) = 1)
10293, 101oveq12d 7449 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) = (𝐴 · 1))
103 mulcl 11239 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
10473, 103mpan2 691 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 · 1) ∈ ℂ)
105104adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝐴 · 1) ∈ ℂ)
106102, 105eqeltrd 2841 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤)) ∈ ℂ)
10792, 106dmmptd 6713 . . . . 5 (𝐴 ∈ ℂ → dom (𝑤 ∈ ℂ ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
10891, 107eqtrd 2777 . . . 4 (𝐴 ∈ ℂ → dom (𝑤 ∈ (dom (ℂ × {𝐴}) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ 𝑦))) ↦ (((ℂ × {𝐴})‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ 𝑦))‘𝑤))) = ℂ)
10983, 87, 1083eqtrd 2781 . . 3 (𝐴 ∈ ℂ → dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
11022, 22, 2, 4, 28, 109dvcof 25986 . 2 (𝐴 ∈ ℂ → (ℂ D (sin ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))))
11123a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D sin) = cos)
112 coscn 26489 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
113112a1i 11 . . . . . 6 (𝐴 ∈ ℂ → cos ∈ (ℂ–cn→ℂ))
114111, 113eqeltrd 2841 . . . . 5 (𝐴 ∈ ℂ → (ℂ D sin) ∈ (ℂ–cn→ℂ))
11533mptex 7243 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V
116115a1i 11 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V)
117 coexg 7951 . . . . 5 (((ℂ D sin) ∈ (ℂ–cn→ℂ) ∧ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ V) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
118114, 116, 117syl2anc 584 . . . 4 (𝐴 ∈ ℂ → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
119 ovexd 7466 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V)
120 offval3 8007 . . . 4 ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V ∧ (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∈ V) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
121118, 119, 120syl2anc 584 . . 3 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
1224frnd 6744 . . . . . . . . 9 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ ℂ)
123122, 28sseqtrrd 4021 . . . . . . . 8 (𝐴 ∈ ℂ → ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin))
124 dmcosseq 5987 . . . . . . . 8 (ran (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ⊆ dom (ℂ D sin) → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
125123, 124syl 17 . . . . . . 7 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
126 ovex 7464 . . . . . . . . 9 (𝐴 · 𝑦) ∈ V
127 eqid 2737 . . . . . . . . 9 (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))
128126, 127dmmpti 6712 . . . . . . . 8 dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ
129128a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) = ℂ)
130125, 129eqtrd 2777 . . . . . 6 (𝐴 ∈ ℂ → dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = ℂ)
131130, 109ineq12d 4221 . . . . 5 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (ℂ ∩ ℂ))
132131, 51eqtrd 2777 . . . 4 (𝐴 ∈ ℂ → (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = ℂ)
133132mpteq1d 5237 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ (dom ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∩ dom (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))))
13411coscld 16167 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘(𝐴 · 𝑤)) ∈ ℂ)
135 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝐴 ∈ ℂ)
136134, 135mulcomd 11282 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos‘(𝐴 · 𝑤)) · 𝐴) = (𝐴 · (cos‘(𝐴 · 𝑤))))
137136mpteq2dva 5242 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
13823coeq1i 5870 . . . . . . . . 9 ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
139138a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))))
140139fveq1d 6908 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))
1414ffund 6740 . . . . . . . . 9 (𝐴 ∈ ℂ → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
142141adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
14310, 128eleqtrrdi 2852 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))
144 fvco 7007 . . . . . . . 8 ((Fun (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∧ 𝑤 ∈ dom (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
145142, 143, 144syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((cos ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)))
14612fveq2d 6910 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (cos‘((𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))‘𝑤)) = (cos‘(𝐴 · 𝑤)))
147140, 145, 1463eqtrd 2781 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = (cos‘(𝐴 · 𝑤)))
148 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
149 0cnd 11254 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 0 ∈ ℂ)
15022, 68dvmptc 25996 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝐴)) = (𝑦 ∈ ℂ ↦ 0))
151 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
15273a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
15371a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
15422, 148, 149, 150, 151, 152, 153dvmptmul 25999 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))))
155151mul02d 11459 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · 𝑦) = 0)
156148mullidd 11279 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 · 𝐴) = 𝐴)
157155, 156oveq12d 7449 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = (0 + 𝐴))
158148addlidd 11462 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + 𝐴) = 𝐴)
159157, 158eqtrd 2777 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 · 𝑦) + (1 · 𝐴)) = 𝐴)
160159mpteq2dva 5242 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ ((0 · 𝑦) + (1 · 𝐴))) = (𝑦 ∈ ℂ ↦ 𝐴))
161154, 160eqtrd 2777 . . . . . . . 8 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
162161adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
163 eqidd 2738 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) ∧ 𝑦 = 𝑤) → 𝐴 = 𝐴)
164162, 163, 10, 135fvmptd 7023 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) = 𝐴)
165147, 164oveq12d 7449 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ) → ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤)) = ((cos‘(𝐴 · 𝑤)) · 𝐴))
166165mpteq2dva 5242 . . . 4 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑤 ∈ ℂ ↦ ((cos‘(𝐴 · 𝑤)) · 𝐴)))
1678fveq2d 6910 . . . . . . 7 (𝑦 = 𝑤 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝑤)))
168167oveq2d 7447 . . . . . 6 (𝑦 = 𝑤 → (𝐴 · (cos‘(𝐴 · 𝑦))) = (𝐴 · (cos‘(𝐴 · 𝑤))))
169168cbvmptv 5255 . . . . 5 (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤))))
170169a1i 11 . . . 4 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))) = (𝑤 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑤)))))
171137, 166, 1703eqtr4d 2787 . . 3 (𝐴 ∈ ℂ → (𝑤 ∈ ℂ ↦ ((((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤) · ((ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))‘𝑤))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
172121, 133, 1713eqtrd 2781 . 2 (𝐴 ∈ ℂ → (((ℂ D sin) ∘ (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) ∘f · (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
17320, 110, 1723eqtrd 2781 1 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · (cos‘(𝐴 · 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2108  wral 3061  Vcvv 3480  cin 3950  wss 3951  {csn 4626  {cpr 4628  cmpt 5225   × cxp 5683  dom cdm 5685  ran crn 5686  ccom 5689  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  sincsin 16099  cosccos 16100  cnccncf 24902   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  dvasinbx  45935  itgcoscmulx  45984  dirkeritg  46117  dirkercncflem2  46119
  Copyright terms: Public domain W3C validator