MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1mpf Structured version   Visualization version   GIF version

Theorem pf1mpf 20976
Description: Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1o eval 𝑅)
Assertion
Ref Expression
pf1mpf (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑄   𝑥,𝑅
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem pf1mpf
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pf1rcl.q . . 3 𝑄 = ran (eval1𝑅)
21pf1rcl 20973 . 2 (𝐹𝑄𝑅 ∈ CRing)
3 id 22 . . . 4 (𝐹𝑄𝐹𝑄)
43, 1eleqtrdi 2900 . . 3 (𝐹𝑄𝐹 ∈ ran (eval1𝑅))
5 eqid 2798 . . . . . 6 (eval1𝑅) = (eval1𝑅)
6 eqid 2798 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
7 eqid 2798 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
8 pf1f.b . . . . . 6 𝐵 = (Base‘𝑅)
95, 6, 7, 8evl1rhm 20956 . . . . 5 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
102, 9syl 17 . . . 4 (𝐹𝑄 → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
11 eqid 2798 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2798 . . . . 5 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
1311, 12rhmf 19474 . . . 4 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
14 ffn 6487 . . . 4 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
15 fvelrnb 6701 . . . 4 ((eval1𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
1610, 13, 14, 154syl 19 . . 3 (𝐹𝑄 → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
174, 16mpbid 235 . 2 (𝐹𝑄 → ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹)
18 eqid 2798 . . . . . . . 8 (1o eval 𝑅) = (1o eval 𝑅)
19 eqid 2798 . . . . . . . 8 (1o mPoly 𝑅) = (1o mPoly 𝑅)
20 eqid 2798 . . . . . . . . 9 (PwSer1𝑅) = (PwSer1𝑅)
216, 20, 11ply1bas 20824 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(1o mPoly 𝑅))
225, 18, 8, 19, 21evl1val 20953 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑦) = (((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))))
2322coeq1d 5696 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ((((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))))
24 coass 6085 . . . . . . 7 ((((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = (((1o eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))))
25 df1o2 8099 . . . . . . . . . . 11 1o = {∅}
268fvexi 6659 . . . . . . . . . . 11 𝐵 ∈ V
27 0ex 5175 . . . . . . . . . . 11 ∅ ∈ V
28 eqid 2798 . . . . . . . . . . 11 (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))
2925, 26, 27, 28mapsncnv 8440 . . . . . . . . . 10 (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) = (𝑧𝐵 ↦ (1o × {𝑧}))
3029coeq1i 5694 . . . . . . . . 9 ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)))
3125, 26, 27, 28mapsnf1o2 8441 . . . . . . . . . 10 (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)):(𝐵m 1o)–1-1-onto𝐵
32 f1ococnv1 6618 . . . . . . . . . 10 ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)):(𝐵m 1o)–1-1-onto𝐵 → ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ( I ↾ (𝐵m 1o)))
3331, 32mp1i 13 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ( I ↾ (𝐵m 1o)))
3430, 33syl5eqr 2847 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ( I ↾ (𝐵m 1o)))
3534coeq2d 5697 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)))) = (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))))
3624, 35syl5eq 2845 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))))
37 eqid 2798 . . . . . . . 8 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
38 eqid 2798 . . . . . . . 8 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
39 simpl 486 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → 𝑅 ∈ CRing)
40 ovexd 7170 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (𝐵m 1o) ∈ V)
41 1on 8092 . . . . . . . . . . 11 1o ∈ On
4218, 8, 19, 37evlrhm 20768 . . . . . . . . . . 11 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
4341, 42mpan 689 . . . . . . . . . 10 (𝑅 ∈ CRing → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
4421, 38rhmf 19474 . . . . . . . . . 10 ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))) → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
4543, 44syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
4645ffvelrnda 6828 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ (Base‘(𝑅s (𝐵m 1o))))
4737, 8, 38, 39, 40, 46pwselbas 16754 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦):(𝐵m 1o)⟶𝐵)
48 fcoi1 6526 . . . . . . 7 (((1o eval 𝑅)‘𝑦):(𝐵m 1o)⟶𝐵 → (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))) = ((1o eval 𝑅)‘𝑦))
4947, 48syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))) = ((1o eval 𝑅)‘𝑦))
5023, 36, 493eqtrd 2837 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ((1o eval 𝑅)‘𝑦))
5145ffnd 6488 . . . . . . 7 (𝑅 ∈ CRing → (1o eval 𝑅) Fn (Base‘(Poly1𝑅)))
52 fnfvelrn 6825 . . . . . . 7 (((1o eval 𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ ran (1o eval 𝑅))
5351, 52sylan 583 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ ran (1o eval 𝑅))
54 mpfpf1.q . . . . . 6 𝐸 = ran (1o eval 𝑅)
5553, 54eleqtrrdi 2901 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ 𝐸)
5650, 55eqeltrd 2890 . . . 4 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸)
57 coeq1 5692 . . . . 5 (((eval1𝑅)‘𝑦) = 𝐹 → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))))
5857eleq1d 2874 . . . 4 (((eval1𝑅)‘𝑦) = 𝐹 → ((((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸 ↔ (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸))
5956, 58syl5ibcom 248 . . 3 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸))
6059rexlimdva 3243 . 2 (𝑅 ∈ CRing → (∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸))
612, 17, 60sylc 65 1 (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  c0 4243  {csn 4525  cmpt 5110   I cid 5424   × cxp 5517  ccnv 5518  ran crn 5520  cres 5521  ccom 5523  Oncon0 6159   Fn wfn 6319  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  1oc1o 8078  m cmap 8389  Basecbs 16475  s cpws 16712  CRingccrg 19291   RingHom crh 19460   mPoly cmpl 20591   eval cevl 20744  PwSer1cps1 20804  Poly1cpl1 20806  eval1ce1 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-rnghom 19463  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-assa 20542  df-asp 20543  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-evls 20745  df-evl 20746  df-psr1 20809  df-ply1 20811  df-evl1 20940
This theorem is referenced by:  pf1ind  20979
  Copyright terms: Public domain W3C validator