MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1mpf Structured version   Visualization version   GIF version

Theorem pf1mpf 22268
Description: Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1o eval 𝑅)
Assertion
Ref Expression
pf1mpf (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑄   𝑥,𝑅
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem pf1mpf
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pf1rcl.q . . 3 𝑄 = ran (eval1𝑅)
21pf1rcl 22265 . 2 (𝐹𝑄𝑅 ∈ CRing)
3 id 22 . . . 4 (𝐹𝑄𝐹𝑄)
43, 1eleqtrdi 2841 . . 3 (𝐹𝑄𝐹 ∈ ran (eval1𝑅))
5 eqid 2731 . . . . . 6 (eval1𝑅) = (eval1𝑅)
6 eqid 2731 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
7 eqid 2731 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
8 pf1f.b . . . . . 6 𝐵 = (Base‘𝑅)
95, 6, 7, 8evl1rhm 22248 . . . . 5 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
102, 9syl 17 . . . 4 (𝐹𝑄 → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
11 eqid 2731 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2731 . . . . 5 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
1311, 12rhmf 20403 . . . 4 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
14 ffn 6651 . . . 4 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
15 fvelrnb 6882 . . . 4 ((eval1𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
1610, 13, 14, 154syl 19 . . 3 (𝐹𝑄 → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
174, 16mpbid 232 . 2 (𝐹𝑄 → ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹)
18 eqid 2731 . . . . . . . 8 (1o eval 𝑅) = (1o eval 𝑅)
19 eqid 2731 . . . . . . . 8 (1o mPoly 𝑅) = (1o mPoly 𝑅)
206, 11ply1bas 22108 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(1o mPoly 𝑅))
215, 18, 8, 19, 20evl1val 22245 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑦) = (((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))))
2221coeq1d 5801 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ((((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))))
23 coass 6213 . . . . . . 7 ((((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = (((1o eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))))
24 df1o2 8392 . . . . . . . . . . 11 1o = {∅}
258fvexi 6836 . . . . . . . . . . 11 𝐵 ∈ V
26 0ex 5245 . . . . . . . . . . 11 ∅ ∈ V
27 eqid 2731 . . . . . . . . . . 11 (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))
2824, 25, 26, 27mapsncnv 8817 . . . . . . . . . 10 (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) = (𝑧𝐵 ↦ (1o × {𝑧}))
2928coeq1i 5799 . . . . . . . . 9 ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)))
3024, 25, 26, 27mapsnf1o2 8818 . . . . . . . . . 10 (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)):(𝐵m 1o)–1-1-onto𝐵
31 f1ococnv1 6792 . . . . . . . . . 10 ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)):(𝐵m 1o)–1-1-onto𝐵 → ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ( I ↾ (𝐵m 1o)))
3230, 31mp1i 13 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ( I ↾ (𝐵m 1o)))
3329, 32eqtr3id 2780 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ( I ↾ (𝐵m 1o)))
3433coeq2d 5802 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)))) = (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))))
3523, 34eqtrid 2778 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))))
36 eqid 2731 . . . . . . . 8 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
37 eqid 2731 . . . . . . . 8 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
38 simpl 482 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → 𝑅 ∈ CRing)
39 ovexd 7381 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (𝐵m 1o) ∈ V)
40 1on 8397 . . . . . . . . . . 11 1o ∈ On
4118, 8, 19, 36evlrhm 22032 . . . . . . . . . . 11 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
4240, 41mpan 690 . . . . . . . . . 10 (𝑅 ∈ CRing → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
4320, 37rhmf 20403 . . . . . . . . . 10 ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))) → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
4442, 43syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
4544ffvelcdmda 7017 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ (Base‘(𝑅s (𝐵m 1o))))
4636, 8, 37, 38, 39, 45pwselbas 17393 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦):(𝐵m 1o)⟶𝐵)
47 fcoi1 6697 . . . . . . 7 (((1o eval 𝑅)‘𝑦):(𝐵m 1o)⟶𝐵 → (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))) = ((1o eval 𝑅)‘𝑦))
4846, 47syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))) = ((1o eval 𝑅)‘𝑦))
4922, 35, 483eqtrd 2770 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ((1o eval 𝑅)‘𝑦))
5044ffnd 6652 . . . . . . 7 (𝑅 ∈ CRing → (1o eval 𝑅) Fn (Base‘(Poly1𝑅)))
51 fnfvelrn 7013 . . . . . . 7 (((1o eval 𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ ran (1o eval 𝑅))
5250, 51sylan 580 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ ran (1o eval 𝑅))
53 mpfpf1.q . . . . . 6 𝐸 = ran (1o eval 𝑅)
5452, 53eleqtrrdi 2842 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ 𝐸)
5549, 54eqeltrd 2831 . . . 4 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸)
56 coeq1 5797 . . . . 5 (((eval1𝑅)‘𝑦) = 𝐹 → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))))
5756eleq1d 2816 . . . 4 (((eval1𝑅)‘𝑦) = 𝐹 → ((((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸 ↔ (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸))
5855, 57syl5ibcom 245 . . 3 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸))
5958rexlimdva 3133 . 2 (𝑅 ∈ CRing → (∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸))
602, 17, 59sylc 65 1 (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  c0 4283  {csn 4576  cmpt 5172   I cid 5510   × cxp 5614  ccnv 5615  ran crn 5617  cres 5618  ccom 5620  Oncon0 6306   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  Basecbs 17120  s cpws 17350  CRingccrg 20153   RingHom crh 20388   mPoly cmpl 21844   eval cevl 22009  Poly1cpl1 22090  eval1ce1 22230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-srg 20106  df-ring 20154  df-cring 20155  df-rhm 20391  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-lsp 20906  df-assa 21791  df-asp 21792  df-ascl 21793  df-psr 21847  df-mvr 21848  df-mpl 21849  df-opsr 21851  df-evls 22010  df-evl 22011  df-psr1 22093  df-ply1 22095  df-evl1 22232
This theorem is referenced by:  pf1ind  22271
  Copyright terms: Public domain W3C validator