MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1mpf Structured version   Visualization version   GIF version

Theorem pf1mpf 20508
Description: Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1o eval 𝑅)
Assertion
Ref Expression
pf1mpf (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑄   𝑥,𝑅
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem pf1mpf
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pf1rcl.q . . 3 𝑄 = ran (eval1𝑅)
21pf1rcl 20505 . 2 (𝐹𝑄𝑅 ∈ CRing)
3 id 22 . . . 4 (𝐹𝑄𝐹𝑄)
43, 1eleqtrdi 2922 . . 3 (𝐹𝑄𝐹 ∈ ran (eval1𝑅))
5 eqid 2820 . . . . . 6 (eval1𝑅) = (eval1𝑅)
6 eqid 2820 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
7 eqid 2820 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
8 pf1f.b . . . . . 6 𝐵 = (Base‘𝑅)
95, 6, 7, 8evl1rhm 20488 . . . . 5 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
102, 9syl 17 . . . 4 (𝐹𝑄 → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
11 eqid 2820 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2820 . . . . 5 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
1311, 12rhmf 19471 . . . 4 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
14 ffn 6507 . . . 4 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
15 fvelrnb 6719 . . . 4 ((eval1𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
1610, 13, 14, 154syl 19 . . 3 (𝐹𝑄 → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
174, 16mpbid 234 . 2 (𝐹𝑄 → ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹)
18 eqid 2820 . . . . . . . 8 (1o eval 𝑅) = (1o eval 𝑅)
19 eqid 2820 . . . . . . . 8 (1o mPoly 𝑅) = (1o mPoly 𝑅)
20 eqid 2820 . . . . . . . . 9 (PwSer1𝑅) = (PwSer1𝑅)
216, 20, 11ply1bas 20356 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(1o mPoly 𝑅))
225, 18, 8, 19, 21evl1val 20485 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑦) = (((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))))
2322coeq1d 5725 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ((((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))))
24 coass 6111 . . . . . . 7 ((((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = (((1o eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))))
25 df1o2 8109 . . . . . . . . . . 11 1o = {∅}
268fvexi 6677 . . . . . . . . . . 11 𝐵 ∈ V
27 0ex 5204 . . . . . . . . . . 11 ∅ ∈ V
28 eqid 2820 . . . . . . . . . . 11 (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))
2925, 26, 27, 28mapsncnv 8450 . . . . . . . . . 10 (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) = (𝑧𝐵 ↦ (1o × {𝑧}))
3029coeq1i 5723 . . . . . . . . 9 ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)))
3125, 26, 27, 28mapsnf1o2 8451 . . . . . . . . . 10 (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)):(𝐵m 1o)–1-1-onto𝐵
32 f1ococnv1 6636 . . . . . . . . . 10 ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)):(𝐵m 1o)–1-1-onto𝐵 → ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ( I ↾ (𝐵m 1o)))
3331, 32mp1i 13 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ( I ↾ (𝐵m 1o)))
3430, 33syl5eqr 2869 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ( I ↾ (𝐵m 1o)))
3534coeq2d 5726 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1o × {𝑧})) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅)))) = (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))))
3624, 35syl5eq 2867 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((((1o eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1o × {𝑧}))) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))))
37 eqid 2820 . . . . . . . 8 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
38 eqid 2820 . . . . . . . 8 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
39 simpl 485 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → 𝑅 ∈ CRing)
40 ovexd 7184 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (𝐵m 1o) ∈ V)
41 1on 8102 . . . . . . . . . . 11 1o ∈ On
4218, 8, 19, 37evlrhm 20302 . . . . . . . . . . 11 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
4341, 42mpan 688 . . . . . . . . . 10 (𝑅 ∈ CRing → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
4421, 38rhmf 19471 . . . . . . . . . 10 ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))) → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
4543, 44syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
4645ffvelrnda 6844 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ (Base‘(𝑅s (𝐵m 1o))))
4737, 8, 38, 39, 40, 46pwselbas 16755 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦):(𝐵m 1o)⟶𝐵)
48 fcoi1 6545 . . . . . . 7 (((1o eval 𝑅)‘𝑦):(𝐵m 1o)⟶𝐵 → (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))) = ((1o eval 𝑅)‘𝑦))
4947, 48syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵m 1o))) = ((1o eval 𝑅)‘𝑦))
5023, 36, 493eqtrd 2859 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = ((1o eval 𝑅)‘𝑦))
5145ffnd 6508 . . . . . . 7 (𝑅 ∈ CRing → (1o eval 𝑅) Fn (Base‘(Poly1𝑅)))
52 fnfvelrn 6841 . . . . . . 7 (((1o eval 𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ ran (1o eval 𝑅))
5351, 52sylan 582 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ ran (1o eval 𝑅))
54 mpfpf1.q . . . . . 6 𝐸 = ran (1o eval 𝑅)
5553, 54eleqtrrdi 2923 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1o eval 𝑅)‘𝑦) ∈ 𝐸)
5650, 55eqeltrd 2912 . . . 4 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸)
57 coeq1 5721 . . . . 5 (((eval1𝑅)‘𝑦) = 𝐹 → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) = (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))))
5857eleq1d 2896 . . . 4 (((eval1𝑅)‘𝑦) = 𝐹 → ((((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸 ↔ (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸))
5956, 58syl5ibcom 247 . . 3 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸))
6059rexlimdva 3283 . 2 (𝑅 ∈ CRing → (∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸))
612, 17, 60sylc 65 1 (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵m 1o) ↦ (𝑥‘∅))) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3138  Vcvv 3491  c0 4284  {csn 4560  cmpt 5139   I cid 5452   × cxp 5546  ccnv 5547  ran crn 5549  cres 5550  ccom 5552  Oncon0 6184   Fn wfn 6343  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7149  1oc1o 8088  m cmap 8399  Basecbs 16476  s cpws 16713  CRingccrg 19291   RingHom crh 19457   mPoly cmpl 20126   eval cevl 20278  PwSer1cps1 20336  Poly1cpl1 20338  eval1ce1 20470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-ofr 7403  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-sup 8899  df-oi 8967  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-fzo 13031  df-seq 13367  df-hash 13688  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-hom 16582  df-cco 16583  df-0g 16708  df-gsum 16709  df-prds 16714  df-pws 16716  df-mre 16850  df-mrc 16851  df-acs 16853  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-mhm 17949  df-submnd 17950  df-grp 18099  df-minusg 18100  df-sbg 18101  df-mulg 18218  df-subg 18269  df-ghm 18349  df-cntz 18440  df-cmn 18901  df-abl 18902  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-rnghom 19460  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-assa 20078  df-asp 20079  df-ascl 20080  df-psr 20129  df-mvr 20130  df-mpl 20131  df-opsr 20133  df-evls 20279  df-evl 20280  df-psr1 20341  df-ply1 20343  df-evl1 20472
This theorem is referenced by:  pf1ind  20511
  Copyright terms: Public domain W3C validator