HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopcoadj2i Structured version   Visualization version   GIF version

Theorem nmopcoadj2i 29517
Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmopcoadj.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmopcoadj2i (normop‘(𝑇 ∘ (adj𝑇))) = ((normop𝑇)↑2)

Proof of Theorem nmopcoadj2i
StepHypRef Expression
1 nmopcoadj.1 . . . 4 𝑇 ∈ BndLinOp
2 adjbdln 29498 . . . 4 (𝑇 ∈ BndLinOp → (adj𝑇) ∈ BndLinOp)
31, 2ax-mp 5 . . 3 (adj𝑇) ∈ BndLinOp
43nmopcoadji 29516 . 2 (normop‘((adj‘(adj𝑇)) ∘ (adj𝑇))) = ((normop‘(adj𝑇))↑2)
5 bdopadj 29497 . . . . . 6 (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adj)
61, 5ax-mp 5 . . . . 5 𝑇 ∈ dom adj
7 adjadj 29351 . . . . 5 (𝑇 ∈ dom adj → (adj‘(adj𝑇)) = 𝑇)
86, 7ax-mp 5 . . . 4 (adj‘(adj𝑇)) = 𝑇
98coeq1i 5515 . . 3 ((adj‘(adj𝑇)) ∘ (adj𝑇)) = (𝑇 ∘ (adj𝑇))
109fveq2i 6437 . 2 (normop‘((adj‘(adj𝑇)) ∘ (adj𝑇))) = (normop‘(𝑇 ∘ (adj𝑇)))
111nmopadji 29505 . . 3 (normop‘(adj𝑇)) = (normop𝑇)
1211oveq1i 6916 . 2 ((normop‘(adj𝑇))↑2) = ((normop𝑇)↑2)
134, 10, 123eqtr3i 2858 1 (normop‘(𝑇 ∘ (adj𝑇))) = ((normop𝑇)↑2)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  dom cdm 5343  ccom 5347  cfv 6124  (class class class)co 6906  2c2 11407  cexp 13155  normopcnop 28358  BndLinOpcbo 28361  adjcado 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cc 9573  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332  ax-mulf 10333  ax-hilex 28412  ax-hfvadd 28413  ax-hvcom 28414  ax-hvass 28415  ax-hv0cl 28416  ax-hvaddid 28417  ax-hfvmul 28418  ax-hvmulid 28419  ax-hvmulass 28420  ax-hvdistr1 28421  ax-hvdistr2 28422  ax-hvmul0 28423  ax-hfi 28492  ax-his1 28495  ax-his2 28496  ax-his3 28497  ax-his4 28498  ax-hcompl 28615
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-supp 7561  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-omul 7832  df-er 8010  df-map 8125  df-pm 8126  df-ixp 8177  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-fsupp 8546  df-fi 8587  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-acn 9082  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-q 12073  df-rp 12114  df-xneg 12233  df-xadd 12234  df-xmul 12235  df-ioo 12468  df-ico 12470  df-icc 12471  df-fz 12621  df-fzo 12762  df-fl 12889  df-seq 13097  df-exp 13156  df-hash 13412  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-clim 14597  df-rlim 14598  df-sum 14795  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-starv 16321  df-sca 16322  df-vsca 16323  df-ip 16324  df-tset 16325  df-ple 16326  df-ds 16328  df-unif 16329  df-hom 16330  df-cco 16331  df-rest 16437  df-topn 16438  df-0g 16456  df-gsum 16457  df-topgen 16458  df-pt 16459  df-prds 16462  df-xrs 16516  df-qtop 16521  df-imas 16522  df-xps 16524  df-mre 16600  df-mrc 16601  df-acs 16603  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-submnd 17690  df-mulg 17896  df-cntz 18101  df-cmn 18549  df-psmet 20099  df-xmet 20100  df-met 20101  df-bl 20102  df-mopn 20103  df-fbas 20104  df-fg 20105  df-cnfld 20108  df-top 21070  df-topon 21087  df-topsp 21109  df-bases 21122  df-cld 21195  df-ntr 21196  df-cls 21197  df-nei 21274  df-cn 21403  df-cnp 21404  df-lm 21405  df-t1 21490  df-haus 21491  df-tx 21737  df-hmeo 21930  df-fil 22021  df-fm 22113  df-flim 22114  df-flf 22115  df-xms 22496  df-ms 22497  df-tms 22498  df-cfil 23424  df-cau 23425  df-cmet 23426  df-grpo 27904  df-gid 27905  df-ginv 27906  df-gdiv 27907  df-ablo 27956  df-vc 27970  df-nv 28003  df-va 28006  df-ba 28007  df-sm 28008  df-0v 28009  df-vs 28010  df-nmcv 28011  df-ims 28012  df-dip 28112  df-ssp 28133  df-lno 28155  df-nmoo 28156  df-0o 28158  df-ph 28224  df-cbn 28275  df-hnorm 28381  df-hba 28382  df-hvsub 28384  df-hlim 28385  df-hcau 28386  df-sh 28620  df-ch 28634  df-oc 28665  df-ch0 28666  df-shs 28723  df-pjh 28810  df-h0op 29163  df-nmop 29254  df-cnop 29255  df-lnop 29256  df-bdop 29257  df-unop 29258  df-hmop 29259  df-nmfn 29260  df-nlfn 29261  df-cnfn 29262  df-lnfn 29263  df-adjh 29264
This theorem is referenced by:  nmopcoadj0i  29518
  Copyright terms: Public domain W3C validator