![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmopcoadj2i | Structured version Visualization version GIF version |
Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of [Beran] p. 106. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopcoadj.1 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
nmopcoadj2i | ⊢ (normop‘(𝑇 ∘ (adjℎ‘𝑇))) = ((normop‘𝑇)↑2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmopcoadj.1 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
2 | adjbdln 32125 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (adjℎ‘𝑇) ∈ BndLinOp |
4 | 3 | nmopcoadji 32143 | . 2 ⊢ (normop‘((adjℎ‘(adjℎ‘𝑇)) ∘ (adjℎ‘𝑇))) = ((normop‘(adjℎ‘𝑇))↑2) |
5 | bdopadj 32124 | . . . . . 6 ⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ) | |
6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ 𝑇 ∈ dom adjℎ |
7 | adjadj 31978 | . . . . 5 ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) = 𝑇) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (adjℎ‘(adjℎ‘𝑇)) = 𝑇 |
9 | 8 | coeq1i 5874 | . . 3 ⊢ ((adjℎ‘(adjℎ‘𝑇)) ∘ (adjℎ‘𝑇)) = (𝑇 ∘ (adjℎ‘𝑇)) |
10 | 9 | fveq2i 6914 | . 2 ⊢ (normop‘((adjℎ‘(adjℎ‘𝑇)) ∘ (adjℎ‘𝑇))) = (normop‘(𝑇 ∘ (adjℎ‘𝑇))) |
11 | 1 | nmopadji 32132 | . . 3 ⊢ (normop‘(adjℎ‘𝑇)) = (normop‘𝑇) |
12 | 11 | oveq1i 7445 | . 2 ⊢ ((normop‘(adjℎ‘𝑇))↑2) = ((normop‘𝑇)↑2) |
13 | 4, 10, 12 | 3eqtr3i 2772 | 1 ⊢ (normop‘(𝑇 ∘ (adjℎ‘𝑇))) = ((normop‘𝑇)↑2) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2107 dom cdm 5690 ∘ ccom 5694 ‘cfv 6566 (class class class)co 7435 2c2 12325 ↑cexp 14105 normopcnop 30987 BndLinOpcbo 30990 adjℎcado 30997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cc 10479 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 ax-mulf 11239 ax-hilex 31041 ax-hfvadd 31042 ax-hvcom 31043 ax-hvass 31044 ax-hv0cl 31045 ax-hvaddid 31046 ax-hfvmul 31047 ax-hvmulid 31048 ax-hvmulass 31049 ax-hvdistr1 31050 ax-hvdistr2 31051 ax-hvmul0 31052 ax-hfi 31121 ax-his1 31124 ax-his2 31125 ax-his3 31126 ax-his4 31127 ax-hcompl 31244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-of 7701 df-om 7892 df-1st 8019 df-2nd 8020 df-supp 8191 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-oadd 8515 df-omul 8516 df-er 8750 df-map 8873 df-pm 8874 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fsupp 9406 df-fi 9455 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-acn 9986 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ioo 13394 df-ico 13396 df-icc 13397 df-fz 13551 df-fzo 13698 df-fl 13835 df-seq 14046 df-exp 14106 df-hash 14373 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-clim 15527 df-rlim 15528 df-sum 15726 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-hom 17328 df-cco 17329 df-rest 17475 df-topn 17476 df-0g 17494 df-gsum 17495 df-topgen 17496 df-pt 17497 df-prds 17500 df-xrs 17555 df-qtop 17560 df-imas 17561 df-xps 17563 df-mre 17637 df-mrc 17638 df-acs 17640 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-mulg 19105 df-cntz 19354 df-cmn 19821 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-fbas 21385 df-fg 21386 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-cld 23049 df-ntr 23050 df-cls 23051 df-nei 23128 df-cn 23257 df-cnp 23258 df-lm 23259 df-t1 23344 df-haus 23345 df-tx 23592 df-hmeo 23785 df-fil 23876 df-fm 23968 df-flim 23969 df-flf 23970 df-xms 24352 df-ms 24353 df-tms 24354 df-cfil 25311 df-cau 25312 df-cmet 25313 df-grpo 30535 df-gid 30536 df-ginv 30537 df-gdiv 30538 df-ablo 30587 df-vc 30601 df-nv 30634 df-va 30637 df-ba 30638 df-sm 30639 df-0v 30640 df-vs 30641 df-nmcv 30642 df-ims 30643 df-dip 30743 df-ssp 30764 df-lno 30786 df-nmoo 30787 df-0o 30789 df-ph 30855 df-cbn 30905 df-hnorm 31010 df-hba 31011 df-hvsub 31013 df-hlim 31014 df-hcau 31015 df-sh 31249 df-ch 31263 df-oc 31294 df-ch0 31295 df-shs 31350 df-pjh 31437 df-h0op 31790 df-nmop 31881 df-cnop 31882 df-lnop 31883 df-bdop 31884 df-unop 31885 df-hmop 31886 df-nmfn 31887 df-nlfn 31888 df-cnfn 31889 df-lnfn 31890 df-adjh 31891 |
This theorem is referenced by: nmopcoadj0i 32145 |
Copyright terms: Public domain | W3C validator |