Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblss Structured version   Visualization version   GIF version

Theorem diblss 39111
Description: The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014.)
Hypotheses
Ref Expression
diblss.b 𝐵 = (Base‘𝐾)
diblss.l = (le‘𝐾)
diblss.h 𝐻 = (LHyp‘𝐾)
diblss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diblss.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
diblss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diblss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem diblss
Dummy variables 𝑎 𝑏 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈))
2 diblss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2738 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 diblss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2738 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
72, 3, 4, 5, 6dvhbase 39024 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
87eqcomd 2744 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
98adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
10 eqid 2738 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 eqid 2738 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
122, 10, 3, 4, 11dvhvbase 39028 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1312eqcomd 2744 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
1413adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
15 eqidd 2739 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (+g𝑈) = (+g𝑈))
16 eqidd 2739 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( ·𝑠𝑈) = ( ·𝑠𝑈))
17 diblss.s . . 3 𝑆 = (LSubSp‘𝑈)
1817a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑆 = (LSubSp‘𝑈))
19 diblss.b . . . 4 𝐵 = (Base‘𝐾)
20 diblss.l . . . 4 = (le‘𝐾)
21 diblss.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
2219, 20, 2, 21, 4, 11dibss 39110 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (Base‘𝑈))
2322, 14sseqtrrd 3958 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 20, 2, 21dibn0 39094 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
25 fvex 6769 . . . . . . 7 (𝑥‘(1st𝑎)) ∈ V
26 vex 3426 . . . . . . . 8 𝑥 ∈ V
27 fvex 6769 . . . . . . . 8 (2nd𝑎) ∈ V
2826, 27coex 7751 . . . . . . 7 (𝑥 ∘ (2nd𝑎)) ∈ V
2925, 28op1st 7812 . . . . . 6 (1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥‘(1st𝑎))
3029coeq1i 5757 . . . . 5 ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) = ((𝑥‘(1st𝑎)) ∘ (1st𝑏))
31 simpll 763 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpr1 1192 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
33 simplr 765 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑋𝐵𝑋 𝑊))
34 simpr2 1193 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (𝐼𝑋))
3519, 20, 2, 10, 21dibelval1st1 39091 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
3631, 33, 34, 35syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
372, 10, 3tendocl 38708 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
3831, 32, 36, 37syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
39 simpr3 1194 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (𝐼𝑋))
4019, 20, 2, 10, 21dibelval1st1 39091 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
4131, 33, 39, 40syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
422, 10ltrnco 38660 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
4331, 38, 41, 42syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
44 simplll 771 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ HL)
4544hllatd 37305 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ Lat)
46 eqid 2738 . . . . . . . . 9 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
4719, 2, 10, 46trlcl 38105 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
4831, 43, 47syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
4919, 2, 10, 46trlcl 38105 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5031, 38, 49syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5119, 2, 10, 46trlcl 38105 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
5231, 41, 51syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
53 eqid 2738 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
5419, 53latjcl 18072 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
5545, 50, 52, 54syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
56 simplrl 773 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑋𝐵)
5720, 53, 2, 10, 46trlco 38668 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
5831, 38, 41, 57syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
5919, 2, 10, 46trlcl 38105 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6031, 36, 59syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6120, 2, 10, 46, 3tendotp 38702 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
6231, 32, 36, 61syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
63 eqid 2738 . . . . . . . . . . . 12 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
6419, 20, 2, 63, 21dibelval1st 39090 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6531, 33, 34, 64syl3anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6619, 20, 2, 10, 46, 63diatrl 38985 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6731, 33, 65, 66syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6819, 20, 45, 50, 60, 56, 62, 67lattrd 18079 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋)
6919, 20, 2, 63, 21dibelval1st 39090 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7031, 33, 39, 69syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7119, 20, 2, 10, 46, 63diatrl 38985 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7231, 33, 70, 71syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7319, 20, 53latjle12 18083 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵𝑋𝐵)) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7445, 50, 52, 56, 73syl13anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7568, 72, 74mpbi2and 708 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋)
7619, 20, 45, 48, 55, 56, 58, 75lattrd 18079 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)
7719, 20, 2, 10, 46, 63diaelval 38974 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
7877adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
7943, 76, 78mpbir2and 709 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
8030, 79eqeltrid 2843 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
81 eqid 2738 . . . . . . . . 9 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))
82 eqid 2738 . . . . . . . . 9 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
832, 10, 3, 4, 5, 81, 82dvhfplusr 39025 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8483ad2antrr 722 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8525, 28op2nd 7813 . . . . . . . 8 (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥 ∘ (2nd𝑎))
86 eqid 2738 . . . . . . . . . . . 12 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
8719, 20, 2, 10, 86, 21dibelval2nd 39093 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
8831, 33, 34, 87syl3anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
8988coeq2d 5760 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
9019, 2, 10, 3, 86tendo0mulr 38768 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9131, 32, 90syl2anc 583 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9289, 91eqtrd 2778 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9385, 92syl5eq 2791 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9419, 20, 2, 10, 86, 21dibelval2nd 39093 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9531, 33, 39, 94syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9684, 93, 95oveq123d 7276 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
97 simpllr 772 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑊𝐻)
9819, 2, 10, 3, 86tendo0cl 38731 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
9998ad2antrr 722 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
10019, 2, 10, 3, 86, 81tendo0pl 38732 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10144, 97, 99, 100syl21anc 834 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10296, 101eqtrd 2778 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
103 ovex 7288 . . . . . 6 ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ V
104103elsn 4573 . . . . 5 (((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ↔ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
105102, 104sylibr 233 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})
106 opelxpi 5617 . . . 4 ((((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10780, 105, 106syl2anc 583 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10823adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
109108, 34sseldd 3918 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
110 eqid 2738 . . . . . . 7 ( ·𝑠𝑈) = ( ·𝑠𝑈)
1112, 10, 3, 4, 110dvhvsca 39042 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
11231, 32, 109, 111syl12anc 833 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
113112oveq1d 7270 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏))
11488, 99eqeltrd 2839 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊))
1152, 3tendococl 38713 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
11631, 32, 114, 115syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
117 opelxpi 5617 . . . . . 6 (((𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
11838, 116, 117syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
119108, 39sseldd 3918 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
120 eqid 2738 . . . . . 6 (+g𝑈) = (+g𝑈)
1212, 10, 3, 4, 5, 120, 82dvhvadd 39033 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12231, 118, 119, 121syl12anc 833 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
123113, 122eqtrd 2778 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12419, 20, 2, 10, 86, 63, 21dibval2 39085 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
125124adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
126107, 123, 1253eltr4d 2854 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ (𝐼𝑋))
1271, 9, 14, 15, 16, 18, 23, 24, 126islssd 20112 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  {csn 4558  cop 4564   class class class wbr 5070  cmpt 5153   I cid 5479   × cxp 5578  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  lecple 16895  joincjn 17944  Latclat 18064  LSubSpclss 20108  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099  TEndoctendo 38693  DIsoAcdia 38969  DVecHcdvh 39019  DIsoBcdib 39079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-undef 8060  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-lss 20109  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tendo 38696  df-edring 38698  df-disoa 38970  df-dvech 39020  df-dib 39080
This theorem is referenced by:  diblsmopel  39112  cdlemn5pre  39141  cdlemn11c  39150  dihjustlem  39157  dihord1  39159  dihord2a  39160  dihord2b  39161  dihord11c  39165  dihlsscpre  39175  dihopelvalcpre  39189  dihlss  39191  dihord6apre  39197  dihord5b  39200  dihord5apre  39203
  Copyright terms: Public domain W3C validator