Step | Hyp | Ref
| Expression |
1 | | eqidd 2734 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (Scalarβπ) = (Scalarβπ)) |
2 | | diblss.h |
. . . . 5
β’ π» = (LHypβπΎ) |
3 | | eqid 2733 |
. . . . 5
β’
((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) |
4 | | diblss.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
5 | | eqid 2733 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
6 | | eqid 2733 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
7 | 2, 3, 4, 5, 6 | dvhbase 39943 |
. . . 4
β’ ((πΎ β HL β§ π β π») β (Baseβ(Scalarβπ)) = ((TEndoβπΎ)βπ)) |
8 | 7 | eqcomd 2739 |
. . 3
β’ ((πΎ β HL β§ π β π») β ((TEndoβπΎ)βπ) = (Baseβ(Scalarβπ))) |
9 | 8 | adantr 482 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β ((TEndoβπΎ)βπ) = (Baseβ(Scalarβπ))) |
10 | | eqid 2733 |
. . . . 5
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
11 | | eqid 2733 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
12 | 2, 10, 3, 4, 11 | dvhvbase 39947 |
. . . 4
β’ ((πΎ β HL β§ π β π») β (Baseβπ) = (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
13 | 12 | eqcomd 2739 |
. . 3
β’ ((πΎ β HL β§ π β π») β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) = (Baseβπ)) |
14 | 13 | adantr 482 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) = (Baseβπ)) |
15 | | eqidd 2734 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (+gβπ) = (+gβπ)) |
16 | | eqidd 2734 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (
Β·π βπ) = ( Β·π
βπ)) |
17 | | diblss.s |
. . 3
β’ π = (LSubSpβπ) |
18 | 17 | a1i 11 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β π = (LSubSpβπ)) |
19 | | diblss.b |
. . . 4
β’ π΅ = (BaseβπΎ) |
20 | | diblss.l |
. . . 4
β’ β€ =
(leβπΎ) |
21 | | diblss.i |
. . . 4
β’ πΌ = ((DIsoBβπΎ)βπ) |
22 | 19, 20, 2, 21, 4, 11 | dibss 40029 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β (Baseβπ)) |
23 | 22, 14 | sseqtrrd 4023 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
24 | 19, 20, 2, 21 | dibn0 40013 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β β
) |
25 | | fvex 6902 |
. . . . . . 7
β’ (π₯β(1st
βπ)) β
V |
26 | | vex 3479 |
. . . . . . . 8
β’ π₯ β V |
27 | | fvex 6902 |
. . . . . . . 8
β’
(2nd βπ) β V |
28 | 26, 27 | coex 7918 |
. . . . . . 7
β’ (π₯ β (2nd
βπ)) β
V |
29 | 25, 28 | op1st 7980 |
. . . . . 6
β’
(1st ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) = (π₯β(1st βπ)) |
30 | 29 | coeq1i 5858 |
. . . . 5
β’
((1st ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) β
(1st βπ))
= ((π₯β(1st
βπ)) β
(1st βπ)) |
31 | | simpll 766 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (πΎ β HL β§ π β π»)) |
32 | | simpr1 1195 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π₯ β ((TEndoβπΎ)βπ)) |
33 | | simplr 768 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (π β π΅ β§ π β€ π)) |
34 | | simpr2 1196 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π β (πΌβπ)) |
35 | 19, 20, 2, 10, 21 | dibelval1st1 40010 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (1st βπ) β ((LTrnβπΎ)βπ)) |
36 | 31, 33, 34, 35 | syl3anc 1372 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (1st βπ) β ((LTrnβπΎ)βπ)) |
37 | 2, 10, 3 | tendocl 39627 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ π₯ β ((TEndoβπΎ)βπ) β§ (1st βπ) β ((LTrnβπΎ)βπ)) β (π₯β(1st βπ)) β ((LTrnβπΎ)βπ)) |
38 | 31, 32, 36, 37 | syl3anc 1372 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (π₯β(1st βπ)) β ((LTrnβπΎ)βπ)) |
39 | | simpr3 1197 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π β (πΌβπ)) |
40 | 19, 20, 2, 10, 21 | dibelval1st1 40010 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (1st βπ) β ((LTrnβπΎ)βπ)) |
41 | 31, 33, 39, 40 | syl3anc 1372 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (1st βπ) β ((LTrnβπΎ)βπ)) |
42 | 2, 10 | ltrnco 39579 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (π₯β(1st βπ)) β ((LTrnβπΎ)βπ) β§ (1st βπ) β ((LTrnβπΎ)βπ)) β ((π₯β(1st βπ)) β (1st
βπ)) β
((LTrnβπΎ)βπ)) |
43 | 31, 38, 41, 42 | syl3anc 1372 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((π₯β(1st βπ)) β (1st
βπ)) β
((LTrnβπΎ)βπ)) |
44 | | simplll 774 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β πΎ β HL) |
45 | 44 | hllatd 38223 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β πΎ β Lat) |
46 | | eqid 2733 |
. . . . . . . . 9
β’
((trLβπΎ)βπ) = ((trLβπΎ)βπ) |
47 | 19, 2, 10, 46 | trlcl 39024 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ ((π₯β(1st βπ)) β (1st
βπ)) β
((LTrnβπΎ)βπ)) β (((trLβπΎ)βπ)β((π₯β(1st βπ)) β (1st
βπ))) β π΅) |
48 | 31, 43, 47 | syl2anc 585 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β((π₯β(1st βπ)) β (1st
βπ))) β π΅) |
49 | 19, 2, 10, 46 | trlcl 39024 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (π₯β(1st βπ)) β ((LTrnβπΎ)βπ)) β (((trLβπΎ)βπ)β(π₯β(1st βπ))) β π΅) |
50 | 31, 38, 49 | syl2anc 585 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β(π₯β(1st βπ))) β π΅) |
51 | 19, 2, 10, 46 | trlcl 39024 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (1st βπ) β ((LTrnβπΎ)βπ)) β (((trLβπΎ)βπ)β(1st βπ)) β π΅) |
52 | 31, 41, 51 | syl2anc 585 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β(1st βπ)) β π΅) |
53 | | eqid 2733 |
. . . . . . . . 9
β’
(joinβπΎ) =
(joinβπΎ) |
54 | 19, 53 | latjcl 18389 |
. . . . . . . 8
β’ ((πΎ β Lat β§
(((trLβπΎ)βπ)β(π₯β(1st βπ))) β π΅ β§ (((trLβπΎ)βπ)β(1st βπ)) β π΅) β ((((trLβπΎ)βπ)β(π₯β(1st βπ)))(joinβπΎ)(((trLβπΎ)βπ)β(1st βπ))) β π΅) |
55 | 45, 50, 52, 54 | syl3anc 1372 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((((trLβπΎ)βπ)β(π₯β(1st βπ)))(joinβπΎ)(((trLβπΎ)βπ)β(1st βπ))) β π΅) |
56 | | simplrl 776 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π β π΅) |
57 | 20, 53, 2, 10, 46 | trlco 39587 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (π₯β(1st βπ)) β ((LTrnβπΎ)βπ) β§ (1st βπ) β ((LTrnβπΎ)βπ)) β (((trLβπΎ)βπ)β((π₯β(1st βπ)) β (1st
βπ))) β€
((((trLβπΎ)βπ)β(π₯β(1st βπ)))(joinβπΎ)(((trLβπΎ)βπ)β(1st βπ)))) |
58 | 31, 38, 41, 57 | syl3anc 1372 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β((π₯β(1st βπ)) β (1st
βπ))) β€
((((trLβπΎ)βπ)β(π₯β(1st βπ)))(joinβπΎ)(((trLβπΎ)βπ)β(1st βπ)))) |
59 | 19, 2, 10, 46 | trlcl 39024 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ (1st βπ) β ((LTrnβπΎ)βπ)) β (((trLβπΎ)βπ)β(1st βπ)) β π΅) |
60 | 31, 36, 59 | syl2anc 585 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β(1st βπ)) β π΅) |
61 | 20, 2, 10, 46, 3 | tendotp 39621 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ π₯ β ((TEndoβπΎ)βπ) β§ (1st βπ) β ((LTrnβπΎ)βπ)) β (((trLβπΎ)βπ)β(π₯β(1st βπ))) β€ (((trLβπΎ)βπ)β(1st βπ))) |
62 | 31, 32, 36, 61 | syl3anc 1372 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β(π₯β(1st βπ))) β€ (((trLβπΎ)βπ)β(1st βπ))) |
63 | | eqid 2733 |
. . . . . . . . . . . 12
β’
((DIsoAβπΎ)βπ) = ((DIsoAβπΎ)βπ) |
64 | 19, 20, 2, 63, 21 | dibelval1st 40009 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (1st βπ) β (((DIsoAβπΎ)βπ)βπ)) |
65 | 31, 33, 34, 64 | syl3anc 1372 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (1st βπ) β (((DIsoAβπΎ)βπ)βπ)) |
66 | 19, 20, 2, 10, 46, 63 | diatrl 39904 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (1st βπ) β (((DIsoAβπΎ)βπ)βπ)) β (((trLβπΎ)βπ)β(1st βπ)) β€ π) |
67 | 31, 33, 65, 66 | syl3anc 1372 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β(1st βπ)) β€ π) |
68 | 19, 20, 45, 50, 60, 56, 62, 67 | lattrd 18396 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β(π₯β(1st βπ))) β€ π) |
69 | 19, 20, 2, 63, 21 | dibelval1st 40009 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (1st βπ) β (((DIsoAβπΎ)βπ)βπ)) |
70 | 31, 33, 39, 69 | syl3anc 1372 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (1st βπ) β (((DIsoAβπΎ)βπ)βπ)) |
71 | 19, 20, 2, 10, 46, 63 | diatrl 39904 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (1st βπ) β (((DIsoAβπΎ)βπ)βπ)) β (((trLβπΎ)βπ)β(1st βπ)) β€ π) |
72 | 31, 33, 70, 71 | syl3anc 1372 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β(1st βπ)) β€ π) |
73 | 19, 20, 53 | latjle12 18400 |
. . . . . . . . 9
β’ ((πΎ β Lat β§
((((trLβπΎ)βπ)β(π₯β(1st βπ))) β π΅ β§ (((trLβπΎ)βπ)β(1st βπ)) β π΅ β§ π β π΅)) β (((((trLβπΎ)βπ)β(π₯β(1st βπ))) β€ π β§ (((trLβπΎ)βπ)β(1st βπ)) β€ π) β ((((trLβπΎ)βπ)β(π₯β(1st βπ)))(joinβπΎ)(((trLβπΎ)βπ)β(1st βπ))) β€ π)) |
74 | 45, 50, 52, 56, 73 | syl13anc 1373 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((((trLβπΎ)βπ)β(π₯β(1st βπ))) β€ π β§ (((trLβπΎ)βπ)β(1st βπ)) β€ π) β ((((trLβπΎ)βπ)β(π₯β(1st βπ)))(joinβπΎ)(((trLβπΎ)βπ)β(1st βπ))) β€ π)) |
75 | 68, 72, 74 | mpbi2and 711 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((((trLβπΎ)βπ)β(π₯β(1st βπ)))(joinβπΎ)(((trLβπΎ)βπ)β(1st βπ))) β€ π) |
76 | 19, 20, 45, 48, 55, 56, 58, 75 | lattrd 18396 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((trLβπΎ)βπ)β((π₯β(1st βπ)) β (1st
βπ))) β€ π) |
77 | 19, 20, 2, 10, 46, 63 | diaelval 39893 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (((π₯β(1st βπ)) β (1st
βπ)) β
(((DIsoAβπΎ)βπ)βπ) β (((π₯β(1st βπ)) β (1st
βπ)) β
((LTrnβπΎ)βπ) β§ (((trLβπΎ)βπ)β((π₯β(1st βπ)) β (1st
βπ))) β€ π))) |
78 | 77 | adantr 482 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (((π₯β(1st βπ)) β (1st
βπ)) β
(((DIsoAβπΎ)βπ)βπ) β (((π₯β(1st βπ)) β (1st
βπ)) β
((LTrnβπΎ)βπ) β§ (((trLβπΎ)βπ)β((π₯β(1st βπ)) β (1st
βπ))) β€ π))) |
79 | 43, 76, 78 | mpbir2and 712 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((π₯β(1st βπ)) β (1st
βπ)) β
(((DIsoAβπΎ)βπ)βπ)) |
80 | 30, 79 | eqeltrid 2838 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((1st
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) β
(1st βπ))
β (((DIsoAβπΎ)βπ)βπ)) |
81 | | eqid 2733 |
. . . . . . . . 9
β’ (π β ((TEndoβπΎ)βπ), π‘ β ((TEndoβπΎ)βπ) β¦ (β β ((LTrnβπΎ)βπ) β¦ ((π ββ) β (π‘ββ)))) = (π β ((TEndoβπΎ)βπ), π‘ β ((TEndoβπΎ)βπ) β¦ (β β ((LTrnβπΎ)βπ) β¦ ((π ββ) β (π‘ββ)))) |
82 | | eqid 2733 |
. . . . . . . . 9
β’
(+gβ(Scalarβπ)) =
(+gβ(Scalarβπ)) |
83 | 2, 10, 3, 4, 5, 81,
82 | dvhfplusr 39944 |
. . . . . . . 8
β’ ((πΎ β HL β§ π β π») β
(+gβ(Scalarβπ)) = (π β ((TEndoβπΎ)βπ), π‘ β ((TEndoβπΎ)βπ) β¦ (β β ((LTrnβπΎ)βπ) β¦ ((π ββ) β (π‘ββ))))) |
84 | 83 | ad2antrr 725 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β
(+gβ(Scalarβπ)) = (π β ((TEndoβπΎ)βπ), π‘ β ((TEndoβπΎ)βπ) β¦ (β β ((LTrnβπΎ)βπ) β¦ ((π ββ) β (π‘ββ))))) |
85 | 25, 28 | op2nd 7981 |
. . . . . . . 8
β’
(2nd ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) = (π₯ β (2nd βπ)) |
86 | | eqid 2733 |
. . . . . . . . . . . 12
β’ (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)) |
87 | 19, 20, 2, 10, 86, 21 | dibelval2nd 40012 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (2nd βπ) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
88 | 31, 33, 34, 87 | syl3anc 1372 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (2nd βπ) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
89 | 88 | coeq2d 5861 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (π₯ β (2nd βπ)) = (π₯ β (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)))) |
90 | 19, 2, 10, 3, 86 | tendo0mulr 39687 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ π₯ β ((TEndoβπΎ)βπ)) β (π₯ β (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
91 | 31, 32, 90 | syl2anc 585 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (π₯ β (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
92 | 89, 91 | eqtrd 2773 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (π₯ β (2nd βπ)) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
93 | 85, 92 | eqtrid 2785 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (2nd
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
94 | 19, 20, 2, 10, 86, 21 | dibelval2nd 40012 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ π β (πΌβπ)) β (2nd βπ) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
95 | 31, 33, 39, 94 | syl3anc 1372 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (2nd βπ) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
96 | 84, 93, 95 | oveq123d 7427 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((2nd
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ)) = ((β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))(π β ((TEndoβπΎ)βπ), π‘ β ((TEndoβπΎ)βπ) β¦ (β β ((LTrnβπΎ)βπ) β¦ ((π ββ) β (π‘ββ))))(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)))) |
97 | | simpllr 775 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π β π») |
98 | 19, 2, 10, 3, 86 | tendo0cl 39650 |
. . . . . . . 8
β’ ((πΎ β HL β§ π β π») β (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)) β ((TEndoβπΎ)βπ)) |
99 | 98 | ad2antrr 725 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)) β ((TEndoβπΎ)βπ)) |
100 | 19, 2, 10, 3, 86, 81 | tendo0pl 39651 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)) β ((TEndoβπΎ)βπ)) β ((β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))(π β ((TEndoβπΎ)βπ), π‘ β ((TEndoβπΎ)βπ) β¦ (β β ((LTrnβπΎ)βπ) β¦ ((π ββ) β (π‘ββ))))(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
101 | 44, 97, 99, 100 | syl21anc 837 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))(π β ((TEndoβπΎ)βπ), π‘ β ((TEndoβπΎ)βπ) β¦ (β β ((LTrnβπΎ)βπ) β¦ ((π ββ) β (π‘ββ))))(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
102 | 96, 101 | eqtrd 2773 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((2nd
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ)) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
103 | | ovex 7439 |
. . . . . 6
β’
((2nd ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ)) β V |
104 | 103 | elsn 4643 |
. . . . 5
β’
(((2nd ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ)) β {(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))} β ((2nd ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ)) = (β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))) |
105 | 102, 104 | sylibr 233 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((2nd
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ)) β {(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))}) |
106 | | opelxpi 5713 |
. . . 4
β’
((((1st ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) β
(1st βπ))
β (((DIsoAβπΎ)βπ)βπ) β§ ((2nd ββ¨(π₯β(1st
βπ)), (π₯ β (2nd
βπ))β©)(+gβ(Scalarβπ))(2nd βπ)) β {(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))}) β β¨((1st
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) β (1st
βπ)), ((2nd
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ))β© β
((((DIsoAβπΎ)βπ)βπ) Γ {(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))})) |
107 | 80, 105, 106 | syl2anc 585 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β β¨((1st
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) β
(1st βπ)),
((2nd ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ))β© β
((((DIsoAβπΎ)βπ)βπ) Γ {(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))})) |
108 | 23 | adantr 482 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (πΌβπ) β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
109 | 108, 34 | sseldd 3983 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
110 | | eqid 2733 |
. . . . . . 7
β’ (
Β·π βπ) = ( Β·π
βπ) |
111 | 2, 10, 3, 4, 110 | dvhvsca 39961 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)))) β (π₯( Β·π
βπ)π) = β¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) |
112 | 31, 32, 109, 111 | syl12anc 836 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (π₯( Β·π
βπ)π) = β¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) |
113 | 112 | oveq1d 7421 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((π₯( Β·π
βπ)π)(+gβπ)π) = (β¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©(+gβπ)π)) |
114 | 88, 99 | eqeltrd 2834 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (2nd βπ) β ((TEndoβπΎ)βπ)) |
115 | 2, 3 | tendococl 39632 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ π₯ β ((TEndoβπΎ)βπ) β§ (2nd βπ) β ((TEndoβπΎ)βπ)) β (π₯ β (2nd βπ)) β ((TEndoβπΎ)βπ)) |
116 | 31, 32, 114, 115 | syl3anc 1372 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (π₯ β (2nd βπ)) β ((TEndoβπΎ)βπ)) |
117 | | opelxpi 5713 |
. . . . . 6
β’ (((π₯β(1st
βπ)) β
((LTrnβπΎ)βπ) β§ (π₯ β (2nd βπ)) β ((TEndoβπΎ)βπ)) β β¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β© β
(((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
118 | 38, 116, 117 | syl2anc 585 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β β¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β© β
(((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
119 | 108, 39 | sseldd 3983 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
120 | | eqid 2733 |
. . . . . 6
β’
(+gβπ) = (+gβπ) |
121 | 2, 10, 3, 4, 5, 120, 82 | dvhvadd 39952 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (β¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β© β
(((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) β§ π β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)))) β (β¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©(+gβπ)π) = β¨((1st
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) β
(1st βπ)),
((2nd ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ))β©) |
122 | 31, 118, 119, 121 | syl12anc 836 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (β¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©(+gβπ)π) = β¨((1st
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) β
(1st βπ)),
((2nd ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ))β©) |
123 | 113, 122 | eqtrd 2773 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((π₯( Β·π
βπ)π)(+gβπ)π) = β¨((1st
ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©) β
(1st βπ)),
((2nd ββ¨(π₯β(1st βπ)), (π₯ β (2nd βπ))β©)(+gβ(Scalarβπ))(2nd βπ))β©) |
124 | 19, 20, 2, 10, 86, 63, 21 | dibval2 40004 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = ((((DIsoAβπΎ)βπ)βπ) Γ {(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))})) |
125 | 124 | adantr 482 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (πΌβπ) = ((((DIsoAβπΎ)βπ)βπ) Γ {(β β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))})) |
126 | 107, 123,
125 | 3eltr4d 2849 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((π₯( Β·π
βπ)π)(+gβπ)π) β (πΌβπ)) |
127 | 1, 9, 14, 15, 16, 18, 23, 24, 126 | islssd 20539 |
1
β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β π) |