Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblss Structured version   Visualization version   GIF version

Theorem diblss 39846
Description: The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014.)
Hypotheses
Ref Expression
diblss.b 𝐵 = (Base‘𝐾)
diblss.l = (le‘𝐾)
diblss.h 𝐻 = (LHyp‘𝐾)
diblss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diblss.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
diblss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diblss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem diblss
Dummy variables 𝑎 𝑏 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈))
2 diblss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2731 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 diblss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2731 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2731 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
72, 3, 4, 5, 6dvhbase 39759 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
87eqcomd 2737 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
98adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
10 eqid 2731 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 eqid 2731 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
122, 10, 3, 4, 11dvhvbase 39763 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1312eqcomd 2737 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
1413adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
15 eqidd 2732 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (+g𝑈) = (+g𝑈))
16 eqidd 2732 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( ·𝑠𝑈) = ( ·𝑠𝑈))
17 diblss.s . . 3 𝑆 = (LSubSp‘𝑈)
1817a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑆 = (LSubSp‘𝑈))
19 diblss.b . . . 4 𝐵 = (Base‘𝐾)
20 diblss.l . . . 4 = (le‘𝐾)
21 diblss.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
2219, 20, 2, 21, 4, 11dibss 39845 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (Base‘𝑈))
2322, 14sseqtrrd 4019 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 20, 2, 21dibn0 39829 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
25 fvex 6891 . . . . . . 7 (𝑥‘(1st𝑎)) ∈ V
26 vex 3477 . . . . . . . 8 𝑥 ∈ V
27 fvex 6891 . . . . . . . 8 (2nd𝑎) ∈ V
2826, 27coex 7903 . . . . . . 7 (𝑥 ∘ (2nd𝑎)) ∈ V
2925, 28op1st 7965 . . . . . 6 (1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥‘(1st𝑎))
3029coeq1i 5851 . . . . 5 ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) = ((𝑥‘(1st𝑎)) ∘ (1st𝑏))
31 simpll 765 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpr1 1194 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
33 simplr 767 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑋𝐵𝑋 𝑊))
34 simpr2 1195 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (𝐼𝑋))
3519, 20, 2, 10, 21dibelval1st1 39826 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
3631, 33, 34, 35syl3anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
372, 10, 3tendocl 39443 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
3831, 32, 36, 37syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
39 simpr3 1196 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (𝐼𝑋))
4019, 20, 2, 10, 21dibelval1st1 39826 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
4131, 33, 39, 40syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
422, 10ltrnco 39395 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
4331, 38, 41, 42syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
44 simplll 773 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ HL)
4544hllatd 38039 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ Lat)
46 eqid 2731 . . . . . . . . 9 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
4719, 2, 10, 46trlcl 38840 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
4831, 43, 47syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
4919, 2, 10, 46trlcl 38840 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5031, 38, 49syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5119, 2, 10, 46trlcl 38840 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
5231, 41, 51syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
53 eqid 2731 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
5419, 53latjcl 18374 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
5545, 50, 52, 54syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
56 simplrl 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑋𝐵)
5720, 53, 2, 10, 46trlco 39403 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
5831, 38, 41, 57syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
5919, 2, 10, 46trlcl 38840 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6031, 36, 59syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6120, 2, 10, 46, 3tendotp 39437 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
6231, 32, 36, 61syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
63 eqid 2731 . . . . . . . . . . . 12 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
6419, 20, 2, 63, 21dibelval1st 39825 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6531, 33, 34, 64syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6619, 20, 2, 10, 46, 63diatrl 39720 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6731, 33, 65, 66syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6819, 20, 45, 50, 60, 56, 62, 67lattrd 18381 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋)
6919, 20, 2, 63, 21dibelval1st 39825 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7031, 33, 39, 69syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7119, 20, 2, 10, 46, 63diatrl 39720 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7231, 33, 70, 71syl3anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7319, 20, 53latjle12 18385 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵𝑋𝐵)) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7445, 50, 52, 56, 73syl13anc 1372 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7568, 72, 74mpbi2and 710 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋)
7619, 20, 45, 48, 55, 56, 58, 75lattrd 18381 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)
7719, 20, 2, 10, 46, 63diaelval 39709 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
7877adantr 481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
7943, 76, 78mpbir2and 711 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
8030, 79eqeltrid 2836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
81 eqid 2731 . . . . . . . . 9 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))
82 eqid 2731 . . . . . . . . 9 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
832, 10, 3, 4, 5, 81, 82dvhfplusr 39760 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8483ad2antrr 724 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8525, 28op2nd 7966 . . . . . . . 8 (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥 ∘ (2nd𝑎))
86 eqid 2731 . . . . . . . . . . . 12 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
8719, 20, 2, 10, 86, 21dibelval2nd 39828 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
8831, 33, 34, 87syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
8988coeq2d 5854 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
9019, 2, 10, 3, 86tendo0mulr 39503 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9131, 32, 90syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9289, 91eqtrd 2771 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9385, 92eqtrid 2783 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9419, 20, 2, 10, 86, 21dibelval2nd 39828 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9531, 33, 39, 94syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9684, 93, 95oveq123d 7414 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
97 simpllr 774 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑊𝐻)
9819, 2, 10, 3, 86tendo0cl 39466 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
9998ad2antrr 724 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
10019, 2, 10, 3, 86, 81tendo0pl 39467 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10144, 97, 99, 100syl21anc 836 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10296, 101eqtrd 2771 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
103 ovex 7426 . . . . . 6 ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ V
104103elsn 4637 . . . . 5 (((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ↔ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
105102, 104sylibr 233 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})
106 opelxpi 5706 . . . 4 ((((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10780, 105, 106syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10823adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
109108, 34sseldd 3979 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
110 eqid 2731 . . . . . . 7 ( ·𝑠𝑈) = ( ·𝑠𝑈)
1112, 10, 3, 4, 110dvhvsca 39777 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
11231, 32, 109, 111syl12anc 835 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
113112oveq1d 7408 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏))
11488, 99eqeltrd 2832 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊))
1152, 3tendococl 39448 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
11631, 32, 114, 115syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
117 opelxpi 5706 . . . . . 6 (((𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
11838, 116, 117syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
119108, 39sseldd 3979 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
120 eqid 2731 . . . . . 6 (+g𝑈) = (+g𝑈)
1212, 10, 3, 4, 5, 120, 82dvhvadd 39768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12231, 118, 119, 121syl12anc 835 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
123113, 122eqtrd 2771 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12419, 20, 2, 10, 86, 63, 21dibval2 39820 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
125124adantr 481 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
126107, 123, 1253eltr4d 2847 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ (𝐼𝑋))
1271, 9, 14, 15, 16, 18, 23, 24, 126islssd 20495 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3944  {csn 4622  cop 4628   class class class wbr 5141  cmpt 5224   I cid 5566   × cxp 5667  cres 5671  ccom 5673  cfv 6532  (class class class)co 7393  cmpo 7395  1st c1st 7955  2nd c2nd 7956  Basecbs 17126  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  lecple 17186  joincjn 18246  Latclat 18366  LSubSpclss 20491  HLchlt 38025  LHypclh 38660  LTrncltrn 38777  trLctrl 38834  TEndoctendo 39428  DIsoAcdia 39704  DVecHcdvh 39754  DIsoBcdib 39814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-riotaBAD 37628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-undef 8240  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-struct 17062  df-slot 17097  df-ndx 17109  df-base 17127  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-lss 20492  df-oposet 37851  df-ol 37853  df-oml 37854  df-covers 37941  df-ats 37942  df-atl 37973  df-cvlat 37997  df-hlat 38026  df-llines 38174  df-lplanes 38175  df-lvols 38176  df-lines 38177  df-psubsp 38179  df-pmap 38180  df-padd 38472  df-lhyp 38664  df-laut 38665  df-ldil 38780  df-ltrn 38781  df-trl 38835  df-tendo 39431  df-edring 39433  df-disoa 39705  df-dvech 39755  df-dib 39815
This theorem is referenced by:  diblsmopel  39847  cdlemn5pre  39876  cdlemn11c  39885  dihjustlem  39892  dihord1  39894  dihord2a  39895  dihord2b  39896  dihord11c  39900  dihlsscpre  39910  dihopelvalcpre  39924  dihlss  39926  dihord6apre  39932  dihord5b  39935  dihord5apre  39938
  Copyright terms: Public domain W3C validator