Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblss Structured version   Visualization version   GIF version

Theorem diblss 38321
Description: The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014.)
Hypotheses
Ref Expression
diblss.b 𝐵 = (Base‘𝐾)
diblss.l = (le‘𝐾)
diblss.h 𝐻 = (LHyp‘𝐾)
diblss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diblss.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
diblss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diblss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem diblss
Dummy variables 𝑎 𝑏 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2822 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈))
2 diblss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2821 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 diblss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2821 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2821 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
72, 3, 4, 5, 6dvhbase 38234 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
87eqcomd 2827 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
98adantr 483 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
10 eqid 2821 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 eqid 2821 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
122, 10, 3, 4, 11dvhvbase 38238 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1312eqcomd 2827 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
1413adantr 483 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
15 eqidd 2822 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (+g𝑈) = (+g𝑈))
16 eqidd 2822 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( ·𝑠𝑈) = ( ·𝑠𝑈))
17 diblss.s . . 3 𝑆 = (LSubSp‘𝑈)
1817a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑆 = (LSubSp‘𝑈))
19 diblss.b . . . 4 𝐵 = (Base‘𝐾)
20 diblss.l . . . 4 = (le‘𝐾)
21 diblss.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
2219, 20, 2, 21, 4, 11dibss 38320 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (Base‘𝑈))
2322, 14sseqtrrd 4008 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 20, 2, 21dibn0 38304 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
25 fvex 6683 . . . . . . 7 (𝑥‘(1st𝑎)) ∈ V
26 vex 3497 . . . . . . . 8 𝑥 ∈ V
27 fvex 6683 . . . . . . . 8 (2nd𝑎) ∈ V
2826, 27coex 7635 . . . . . . 7 (𝑥 ∘ (2nd𝑎)) ∈ V
2925, 28op1st 7697 . . . . . 6 (1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥‘(1st𝑎))
3029coeq1i 5730 . . . . 5 ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) = ((𝑥‘(1st𝑎)) ∘ (1st𝑏))
31 simpll 765 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpr1 1190 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
33 simplr 767 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑋𝐵𝑋 𝑊))
34 simpr2 1191 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (𝐼𝑋))
3519, 20, 2, 10, 21dibelval1st1 38301 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
3631, 33, 34, 35syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
372, 10, 3tendocl 37918 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
3831, 32, 36, 37syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
39 simpr3 1192 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (𝐼𝑋))
4019, 20, 2, 10, 21dibelval1st1 38301 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
4131, 33, 39, 40syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
422, 10ltrnco 37870 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
4331, 38, 41, 42syl3anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
44 simplll 773 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ HL)
4544hllatd 36515 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ Lat)
46 eqid 2821 . . . . . . . . 9 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
4719, 2, 10, 46trlcl 37315 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
4831, 43, 47syl2anc 586 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
4919, 2, 10, 46trlcl 37315 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5031, 38, 49syl2anc 586 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5119, 2, 10, 46trlcl 37315 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
5231, 41, 51syl2anc 586 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
53 eqid 2821 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
5419, 53latjcl 17661 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
5545, 50, 52, 54syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
56 simplrl 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑋𝐵)
5720, 53, 2, 10, 46trlco 37878 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
5831, 38, 41, 57syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
5919, 2, 10, 46trlcl 37315 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6031, 36, 59syl2anc 586 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6120, 2, 10, 46, 3tendotp 37912 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
6231, 32, 36, 61syl3anc 1367 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
63 eqid 2821 . . . . . . . . . . . 12 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
6419, 20, 2, 63, 21dibelval1st 38300 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6531, 33, 34, 64syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6619, 20, 2, 10, 46, 63diatrl 38195 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6731, 33, 65, 66syl3anc 1367 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6819, 20, 45, 50, 60, 56, 62, 67lattrd 17668 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋)
6919, 20, 2, 63, 21dibelval1st 38300 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7031, 33, 39, 69syl3anc 1367 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7119, 20, 2, 10, 46, 63diatrl 38195 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7231, 33, 70, 71syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7319, 20, 53latjle12 17672 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵𝑋𝐵)) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7445, 50, 52, 56, 73syl13anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7568, 72, 74mpbi2and 710 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋)
7619, 20, 45, 48, 55, 56, 58, 75lattrd 17668 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)
7719, 20, 2, 10, 46, 63diaelval 38184 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
7877adantr 483 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
7943, 76, 78mpbir2and 711 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
8030, 79eqeltrid 2917 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
81 eqid 2821 . . . . . . . . 9 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))
82 eqid 2821 . . . . . . . . 9 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
832, 10, 3, 4, 5, 81, 82dvhfplusr 38235 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8483ad2antrr 724 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8525, 28op2nd 7698 . . . . . . . 8 (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥 ∘ (2nd𝑎))
86 eqid 2821 . . . . . . . . . . . 12 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
8719, 20, 2, 10, 86, 21dibelval2nd 38303 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
8831, 33, 34, 87syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
8988coeq2d 5733 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
9019, 2, 10, 3, 86tendo0mulr 37978 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9131, 32, 90syl2anc 586 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9289, 91eqtrd 2856 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9385, 92syl5eq 2868 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9419, 20, 2, 10, 86, 21dibelval2nd 38303 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9531, 33, 39, 94syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9684, 93, 95oveq123d 7177 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
97 simpllr 774 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑊𝐻)
9819, 2, 10, 3, 86tendo0cl 37941 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
9998ad2antrr 724 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
10019, 2, 10, 3, 86, 81tendo0pl 37942 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10144, 97, 99, 100syl21anc 835 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10296, 101eqtrd 2856 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
103 ovex 7189 . . . . . 6 ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ V
104103elsn 4582 . . . . 5 (((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ↔ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
105102, 104sylibr 236 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})
106 opelxpi 5592 . . . 4 ((((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10780, 105, 106syl2anc 586 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10823adantr 483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
109108, 34sseldd 3968 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
110 eqid 2821 . . . . . . 7 ( ·𝑠𝑈) = ( ·𝑠𝑈)
1112, 10, 3, 4, 110dvhvsca 38252 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
11231, 32, 109, 111syl12anc 834 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
113112oveq1d 7171 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏))
11488, 99eqeltrd 2913 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊))
1152, 3tendococl 37923 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
11631, 32, 114, 115syl3anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
117 opelxpi 5592 . . . . . 6 (((𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
11838, 116, 117syl2anc 586 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
119108, 39sseldd 3968 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
120 eqid 2821 . . . . . 6 (+g𝑈) = (+g𝑈)
1212, 10, 3, 4, 5, 120, 82dvhvadd 38243 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12231, 118, 119, 121syl12anc 834 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
123113, 122eqtrd 2856 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12419, 20, 2, 10, 86, 63, 21dibval2 38295 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
125124adantr 483 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
126107, 123, 1253eltr4d 2928 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ (𝐼𝑋))
1271, 9, 14, 15, 16, 18, 23, 24, 126islssd 19707 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936  {csn 4567  cop 4573   class class class wbr 5066  cmpt 5146   I cid 5459   × cxp 5553  cres 5557  ccom 5559  cfv 6355  (class class class)co 7156  cmpo 7158  1st c1st 7687  2nd c2nd 7688  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  lecple 16572  joincjn 17554  Latclat 17655  LSubSpclss 19703  HLchlt 36501  LHypclh 37135  LTrncltrn 37252  trLctrl 37309  TEndoctendo 37903  DIsoAcdia 38179  DVecHcdvh 38229  DIsoBcdib 38289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-undef 7939  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-lss 19704  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651  df-lines 36652  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310  df-tendo 37906  df-edring 37908  df-disoa 38180  df-dvech 38230  df-dib 38290
This theorem is referenced by:  diblsmopel  38322  cdlemn5pre  38351  cdlemn11c  38360  dihjustlem  38367  dihord1  38369  dihord2a  38370  dihord2b  38371  dihord11c  38375  dihlsscpre  38385  dihopelvalcpre  38399  dihlss  38401  dihord6apre  38407  dihord5b  38410  dihord5apre  38413
  Copyright terms: Public domain W3C validator