Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈)) |
2 | | diblss.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | eqid 2738 |
. . . . 5
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
4 | | diblss.u |
. . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
5 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
6 | | eqid 2738 |
. . . . 5
⊢
(Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) |
7 | 2, 3, 4, 5, 6 | dvhbase 39097 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
8 | 7 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
9 | 8 | adantr 481 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
10 | | eqid 2738 |
. . . . 5
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
11 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑈) =
(Base‘𝑈) |
12 | 2, 10, 3, 4, 11 | dvhvbase 39101 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
13 | 12 | eqcomd 2744 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
14 | 13 | adantr 481 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
15 | | eqidd 2739 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (+g‘𝑈) = (+g‘𝑈)) |
16 | | eqidd 2739 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈)) |
17 | | diblss.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑈) |
18 | 17 | a1i 11 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝑆 = (LSubSp‘𝑈)) |
19 | | diblss.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
20 | | diblss.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
21 | | diblss.i |
. . . 4
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
22 | 19, 20, 2, 21, 4, 11 | dibss 39183 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ (Base‘𝑈)) |
23 | 22, 14 | sseqtrrd 3962 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
24 | 19, 20, 2, 21 | dibn0 39167 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
25 | | fvex 6787 |
. . . . . . 7
⊢ (𝑥‘(1st
‘𝑎)) ∈
V |
26 | | vex 3436 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
27 | | fvex 6787 |
. . . . . . . 8
⊢
(2nd ‘𝑎) ∈ V |
28 | 26, 27 | coex 7777 |
. . . . . . 7
⊢ (𝑥 ∘ (2nd
‘𝑎)) ∈
V |
29 | 25, 28 | op1st 7839 |
. . . . . 6
⊢
(1st ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) = (𝑥‘(1st ‘𝑎)) |
30 | 29 | coeq1i 5768 |
. . . . 5
⊢
((1st ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) ∘
(1st ‘𝑏))
= ((𝑥‘(1st
‘𝑎)) ∘
(1st ‘𝑏)) |
31 | | simpll 764 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
32 | | simpr1 1193 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) |
33 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
34 | | simpr2 1194 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑎 ∈ (𝐼‘𝑋)) |
35 | 19, 20, 2, 10, 21 | dibelval1st1 39164 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋)) → (1st ‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) |
36 | 31, 33, 34, 35 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (1st ‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) |
37 | 2, 10, 3 | tendocl 38781 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st ‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑥‘(1st ‘𝑎)) ∈ ((LTrn‘𝐾)‘𝑊)) |
38 | 31, 32, 36, 37 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑥‘(1st ‘𝑎)) ∈ ((LTrn‘𝐾)‘𝑊)) |
39 | | simpr3 1195 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑏 ∈ (𝐼‘𝑋)) |
40 | 19, 20, 2, 10, 21 | dibelval1st1 39164 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑏 ∈ (𝐼‘𝑋)) → (1st ‘𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) |
41 | 31, 33, 39, 40 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (1st ‘𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) |
42 | 2, 10 | ltrnco 38733 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥‘(1st ‘𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st ‘𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏)) ∈
((LTrn‘𝐾)‘𝑊)) |
43 | 31, 38, 41, 42 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏)) ∈
((LTrn‘𝐾)‘𝑊)) |
44 | | simplll 772 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝐾 ∈ HL) |
45 | 44 | hllatd 37378 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝐾 ∈ Lat) |
46 | | eqid 2738 |
. . . . . . . . 9
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
47 | 19, 2, 10, 46 | trlcl 38178 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏)) ∈
((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏))) ∈ 𝐵) |
48 | 31, 43, 47 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏))) ∈ 𝐵) |
49 | 19, 2, 10, 46 | trlcl 38178 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥‘(1st ‘𝑎)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎))) ∈ 𝐵) |
50 | 31, 38, 49 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎))) ∈ 𝐵) |
51 | 19, 2, 10, 46 | trlcl 38178 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (1st ‘𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)) ∈ 𝐵) |
52 | 31, 41, 51 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)) ∈ 𝐵) |
53 | | eqid 2738 |
. . . . . . . . 9
⊢
(join‘𝐾) =
(join‘𝐾) |
54 | 19, 53 | latjcl 18157 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧
(((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st ‘𝑏))) ∈ 𝐵) |
55 | 45, 50, 52, 54 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st ‘𝑏))) ∈ 𝐵) |
56 | | simplrl 774 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑋 ∈ 𝐵) |
57 | 20, 53, 2, 10, 46 | trlco 38741 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥‘(1st ‘𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st ‘𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏))) ≤
((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)))) |
58 | 31, 38, 41, 57 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏))) ≤
((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)))) |
59 | 19, 2, 10, 46 | trlcl 38178 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (1st ‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st ‘𝑎)) ∈ 𝐵) |
60 | 31, 36, 59 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st ‘𝑎)) ∈ 𝐵) |
61 | 20, 2, 10, 46, 3 | tendotp 38775 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st ‘𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎))) ≤ (((trL‘𝐾)‘𝑊)‘(1st ‘𝑎))) |
62 | 31, 32, 36, 61 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎))) ≤ (((trL‘𝐾)‘𝑊)‘(1st ‘𝑎))) |
63 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) |
64 | 19, 20, 2, 63, 21 | dibelval1st 39163 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋)) → (1st ‘𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
65 | 31, 33, 34, 64 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (1st ‘𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
66 | 19, 20, 2, 10, 46, 63 | diatrl 39058 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (1st ‘𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st ‘𝑎)) ≤ 𝑋) |
67 | 31, 33, 65, 66 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st ‘𝑎)) ≤ 𝑋) |
68 | 19, 20, 45, 50, 60, 56, 62, 67 | lattrd 18164 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎))) ≤ 𝑋) |
69 | 19, 20, 2, 63, 21 | dibelval1st 39163 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑏 ∈ (𝐼‘𝑋)) → (1st ‘𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
70 | 31, 33, 39, 69 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (1st ‘𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
71 | 19, 20, 2, 10, 46, 63 | diatrl 39058 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (1st ‘𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)) ≤ 𝑋) |
72 | 31, 33, 70, 71 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)) ≤ 𝑋) |
73 | 19, 20, 53 | latjle12 18168 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧
((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎))) ≤ 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)) ≤ 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st ‘𝑏))) ≤ 𝑋)) |
74 | 45, 50, 52, 56, 73 | syl13anc 1371 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎))) ≤ 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st ‘𝑏)) ≤ 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st ‘𝑏))) ≤ 𝑋)) |
75 | 68, 72, 74 | mpbi2and 709 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st ‘𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st ‘𝑏))) ≤ 𝑋) |
76 | 19, 20, 45, 48, 55, 56, 58, 75 | lattrd 18164 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏))) ≤ 𝑋) |
77 | 19, 20, 2, 10, 46, 63 | diaelval 39047 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏)) ∈
(((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏)) ∈
((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏))) ≤ 𝑋))) |
78 | 77 | adantr 481 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏)) ∈
(((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏)) ∈
((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏))) ≤ 𝑋))) |
79 | 43, 76, 78 | mpbir2and 710 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥‘(1st ‘𝑎)) ∘ (1st
‘𝑏)) ∈
(((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
80 | 30, 79 | eqeltrid 2843 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((1st
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) ∘
(1st ‘𝑏))
∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) |
81 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ)))) |
82 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘(Scalar‘𝑈)) =
(+g‘(Scalar‘𝑈)) |
83 | 2, 10, 3, 4, 5, 81,
82 | dvhfplusr 39098 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) →
(+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))) |
84 | 83 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) →
(+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))) |
85 | 25, 28 | op2nd 7840 |
. . . . . . . 8
⊢
(2nd ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) = (𝑥 ∘ (2nd ‘𝑎)) |
86 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) |
87 | 19, 20, 2, 10, 86, 21 | dibelval2nd 39166 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋)) → (2nd ‘𝑎) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
88 | 31, 33, 34, 87 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (2nd ‘𝑎) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
89 | 88 | coeq2d 5771 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑥 ∘ (2nd ‘𝑎)) = (𝑥 ∘ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))) |
90 | 19, 2, 10, 3, 86 | tendo0mulr 38841 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
91 | 31, 32, 90 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑥 ∘ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
92 | 89, 91 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑥 ∘ (2nd ‘𝑎)) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
93 | 85, 92 | eqtrid 2790 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (2nd
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
94 | 19, 20, 2, 10, 86, 21 | dibelval2nd 39166 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑏 ∈ (𝐼‘𝑋)) → (2nd ‘𝑏) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
95 | 31, 33, 39, 94 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (2nd ‘𝑏) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
96 | 84, 93, 95 | oveq123d 7296 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((2nd
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏)) = ((ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))) |
97 | | simpllr 773 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑊 ∈ 𝐻) |
98 | 19, 2, 10, 3, 86 | tendo0cl 38804 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) |
99 | 98 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) |
100 | 19, 2, 10, 3, 86, 81 | tendo0pl 38805 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) → ((ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
101 | 44, 97, 99, 100 | syl21anc 835 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
102 | 96, 101 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((2nd
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏)) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
103 | | ovex 7308 |
. . . . . 6
⊢
((2nd ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏)) ∈ V |
104 | 103 | elsn 4576 |
. . . . 5
⊢
(((2nd ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏)) ∈ {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ↔ ((2nd ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏)) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) |
105 | 102, 104 | sylibr 233 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((2nd
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏)) ∈ {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) |
106 | | opelxpi 5626 |
. . . 4
⊢
((((1st ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) ∘
(1st ‘𝑏))
∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ ((2nd ‘〈(𝑥‘(1st
‘𝑎)), (𝑥 ∘ (2nd
‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏)) ∈ {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) → 〈((1st
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) ∘ (1st
‘𝑏)), ((2nd
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏))〉 ∈
((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})) |
107 | 80, 105, 106 | syl2anc 584 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 〈((1st
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) ∘
(1st ‘𝑏)),
((2nd ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏))〉 ∈
((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})) |
108 | 23 | adantr 481 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝐼‘𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
109 | 108, 34 | sseldd 3922 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
110 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
111 | 2, 10, 3, 4, 110 | dvhvsca 39115 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠
‘𝑈)𝑎) = 〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) |
112 | 31, 32, 109, 111 | syl12anc 834 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑥( ·𝑠
‘𝑈)𝑎) = 〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) |
113 | 112 | oveq1d 7290 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥( ·𝑠
‘𝑈)𝑎)(+g‘𝑈)𝑏) = (〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉(+g‘𝑈)𝑏)) |
114 | 88, 99 | eqeltrd 2839 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (2nd ‘𝑎) ∈ ((TEndo‘𝐾)‘𝑊)) |
115 | 2, 3 | tendococl 38786 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd ‘𝑎) ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ (2nd ‘𝑎)) ∈ ((TEndo‘𝐾)‘𝑊)) |
116 | 31, 32, 114, 115 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝑥 ∘ (2nd ‘𝑎)) ∈ ((TEndo‘𝐾)‘𝑊)) |
117 | | opelxpi 5626 |
. . . . . 6
⊢ (((𝑥‘(1st
‘𝑎)) ∈
((LTrn‘𝐾)‘𝑊) ∧ (𝑥 ∘ (2nd ‘𝑎)) ∈ ((TEndo‘𝐾)‘𝑊)) → 〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉 ∈
(((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
118 | 38, 116, 117 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉 ∈
(((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
119 | 108, 39 | sseldd 3922 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
120 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑈) = (+g‘𝑈) |
121 | 2, 10, 3, 4, 5, 120, 82 | dvhvadd 39106 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉 ∈
(((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉(+g‘𝑈)𝑏) = 〈((1st
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) ∘
(1st ‘𝑏)),
((2nd ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏))〉) |
122 | 31, 118, 119, 121 | syl12anc 834 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉(+g‘𝑈)𝑏) = 〈((1st
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) ∘
(1st ‘𝑏)),
((2nd ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏))〉) |
123 | 113, 122 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥( ·𝑠
‘𝑈)𝑎)(+g‘𝑈)𝑏) = 〈((1st
‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉) ∘
(1st ‘𝑏)),
((2nd ‘〈(𝑥‘(1st ‘𝑎)), (𝑥 ∘ (2nd ‘𝑎))〉)(+g‘(Scalar‘𝑈))(2nd ‘𝑏))〉) |
124 | 19, 20, 2, 10, 86, 63, 21 | dibval2 39158 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})) |
125 | 124 | adantr 481 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})) |
126 | 107, 123,
125 | 3eltr4d 2854 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑋) ∧ 𝑏 ∈ (𝐼‘𝑋))) → ((𝑥( ·𝑠
‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑋)) |
127 | 1, 9, 14, 15, 16, 18, 23, 24, 126 | islssd 20197 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ 𝑆) |