Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diblss Structured version   Visualization version   GIF version

Theorem diblss 41164
Description: The value of partial isomorphism B is a subspace of partial vector space H. TODO: use dib* specific theorems instead of dia* ones to shorten proof? (Contributed by NM, 11-Feb-2014.)
Hypotheses
Ref Expression
diblss.b 𝐵 = (Base‘𝐾)
diblss.l = (le‘𝐾)
diblss.h 𝐻 = (LHyp‘𝐾)
diblss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diblss.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
diblss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diblss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem diblss
Dummy variables 𝑎 𝑏 𝑥 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈))
2 diblss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2729 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 diblss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2729 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2729 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
72, 3, 4, 5, 6dvhbase 41077 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
87eqcomd 2735 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
98adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
10 eqid 2729 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 eqid 2729 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
122, 10, 3, 4, 11dvhvbase 41081 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1312eqcomd 2735 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
1413adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
15 eqidd 2730 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (+g𝑈) = (+g𝑈))
16 eqidd 2730 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ( ·𝑠𝑈) = ( ·𝑠𝑈))
17 diblss.s . . 3 𝑆 = (LSubSp‘𝑈)
1817a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → 𝑆 = (LSubSp‘𝑈))
19 diblss.b . . . 4 𝐵 = (Base‘𝐾)
20 diblss.l . . . 4 = (le‘𝐾)
21 diblss.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
2219, 20, 2, 21, 4, 11dibss 41163 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (Base‘𝑈))
2322, 14sseqtrrd 3984 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 20, 2, 21dibn0 41147 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
25 fvex 6871 . . . . . . 7 (𝑥‘(1st𝑎)) ∈ V
26 vex 3451 . . . . . . . 8 𝑥 ∈ V
27 fvex 6871 . . . . . . . 8 (2nd𝑎) ∈ V
2826, 27coex 7906 . . . . . . 7 (𝑥 ∘ (2nd𝑎)) ∈ V
2925, 28op1st 7976 . . . . . 6 (1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥‘(1st𝑎))
3029coeq1i 5823 . . . . 5 ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) = ((𝑥‘(1st𝑎)) ∘ (1st𝑏))
31 simpll 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simpr1 1195 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
33 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑋𝐵𝑋 𝑊))
34 simpr2 1196 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (𝐼𝑋))
3519, 20, 2, 10, 21dibelval1st1 41144 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
3631, 33, 34, 35syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊))
372, 10, 3tendocl 40761 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
3831, 32, 36, 37syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊))
39 simpr3 1197 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (𝐼𝑋))
4019, 20, 2, 10, 21dibelval1st1 41144 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
4131, 33, 39, 40syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊))
422, 10ltrnco 40713 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
4331, 38, 41, 42syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊))
44 simplll 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ HL)
4544hllatd 39357 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝐾 ∈ Lat)
46 eqid 2729 . . . . . . . . 9 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
4719, 2, 10, 46trlcl 40158 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
4831, 43, 47syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ∈ 𝐵)
4919, 2, 10, 46trlcl 40158 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5031, 38, 49syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵)
5119, 2, 10, 46trlcl 40158 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
5231, 41, 51syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵)
53 eqid 2729 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
5419, 53latjcl 18398 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
5545, 50, 52, 54syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) ∈ 𝐵)
56 simplrl 776 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑋𝐵)
5720, 53, 2, 10, 46trlco 40721 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (1st𝑏) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
5831, 38, 41, 57syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))))
5919, 2, 10, 46trlcl 40158 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6031, 36, 59syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) ∈ 𝐵)
6120, 2, 10, 46, 3tendotp 40755 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (1st𝑎) ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
6231, 32, 36, 61syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) (((trL‘𝐾)‘𝑊)‘(1st𝑎)))
63 eqid 2729 . . . . . . . . . . . 12 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
6419, 20, 2, 63, 21dibelval1st 41143 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6531, 33, 34, 64syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
6619, 20, 2, 10, 46, 63diatrl 41038 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑎) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6731, 33, 65, 66syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑎)) 𝑋)
6819, 20, 45, 50, 60, 56, 62, 67lattrd 18405 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋)
6919, 20, 2, 63, 21dibelval1st 41143 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7031, 33, 39, 69syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
7119, 20, 2, 10, 46, 63diatrl 41038 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (1st𝑏) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋)) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7231, 33, 70, 71syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋)
7319, 20, 53latjle12 18409 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) ∈ 𝐵 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) ∈ 𝐵𝑋𝐵)) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7445, 50, 52, 56, 73syl13anc 1374 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎))) 𝑋 ∧ (((trL‘𝐾)‘𝑊)‘(1st𝑏)) 𝑋) ↔ ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋))
7568, 72, 74mpbi2and 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((((trL‘𝐾)‘𝑊)‘(𝑥‘(1st𝑎)))(join‘𝐾)(((trL‘𝐾)‘𝑊)‘(1st𝑏))) 𝑋)
7619, 20, 45, 48, 55, 56, 58, 75lattrd 18405 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)
7719, 20, 2, 10, 46, 63diaelval 41027 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
7877adantr 480 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (((trL‘𝐾)‘𝑊)‘((𝑥‘(1st𝑎)) ∘ (1st𝑏))) 𝑋)))
7943, 76, 78mpbir2and 713 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥‘(1st𝑎)) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
8030, 79eqeltrid 2832 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋))
81 eqid 2729 . . . . . . . . 9 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))
82 eqid 2729 . . . . . . . . 9 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
832, 10, 3, 4, 5, 81, 82dvhfplusr 41078 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8483ad2antrr 726 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
8525, 28op2nd 7977 . . . . . . . 8 (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = (𝑥 ∘ (2nd𝑎))
86 eqid 2729 . . . . . . . . . . . 12 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
8719, 20, 2, 10, 86, 21dibelval2nd 41146 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑎 ∈ (𝐼𝑋)) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
8831, 33, 34, 87syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
8988coeq2d 5826 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
9019, 2, 10, 3, 86tendo0mulr 40821 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9131, 32, 90syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9289, 91eqtrd 2764 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9385, 92eqtrid 2776 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9419, 20, 2, 10, 86, 21dibelval2nd 41146 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ 𝑏 ∈ (𝐼𝑋)) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9531, 33, 39, 94syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑏) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
9684, 93, 95oveq123d 7408 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))))
97 simpllr 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑊𝐻)
9819, 2, 10, 3, 86tendo0cl 40784 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
9998ad2antrr 726 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
10019, 2, 10, 3, 86, 81tendo0pl 40785 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊)) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10144, 97, 99, 100syl21anc 837 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
10296, 101eqtrd 2764 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
103 ovex 7420 . . . . . 6 ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ V
104103elsn 4604 . . . . 5 (((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ↔ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)))
105102, 104sylibr 234 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})
106 opelxpi 5675 . . . 4 ((((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏)) ∈ {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10780, 105, 106syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
10823adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
109108, 34sseldd 3947 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
110 eqid 2729 . . . . . . 7 ( ·𝑠𝑈) = ( ·𝑠𝑈)
1112, 10, 3, 4, 110dvhvsca 41095 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
11231, 32, 109, 111syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥( ·𝑠𝑈)𝑎) = ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)
113112oveq1d 7402 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏))
11488, 99eqeltrd 2828 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊))
1152, 3tendococl 40766 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑎) ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
11631, 32, 114, 115syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊))
117 opelxpi 5675 . . . . . 6 (((𝑥‘(1st𝑎)) ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑥 ∘ (2nd𝑎)) ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
11838, 116, 117syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
119108, 39sseldd 3947 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
120 eqid 2729 . . . . . 6 (+g𝑈) = (+g𝑈)
1212, 10, 3, 4, 5, 120, 82dvhvadd 41086 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩ ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑏 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12231, 118, 119, 121syl12anc 836 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
123113, 122eqtrd 2764 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) = ⟨((1st ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩) ∘ (1st𝑏)), ((2nd ‘⟨(𝑥‘(1st𝑎)), (𝑥 ∘ (2nd𝑎))⟩)(+g‘(Scalar‘𝑈))(2nd𝑏))⟩)
12419, 20, 2, 10, 86, 63, 21dibval2 41138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
125124adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
126107, 123, 1253eltr4d 2843 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑋) ∧ 𝑏 ∈ (𝐼𝑋))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ (𝐼𝑋))
1271, 9, 14, 15, 16, 18, 23, 24, 126islssd 20841 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188   I cid 5532   × cxp 5636  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  lecple 17227  joincjn 18272  Latclat 18390  LSubSpclss 20837  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152  TEndoctendo 40746  DIsoAcdia 41022  DVecHcdvh 41072  DIsoBcdib 41132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-lss 20838  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749  df-edring 40751  df-disoa 41023  df-dvech 41073  df-dib 41133
This theorem is referenced by:  diblsmopel  41165  cdlemn5pre  41194  cdlemn11c  41203  dihjustlem  41210  dihord1  41212  dihord2a  41213  dihord2b  41214  dihord11c  41218  dihlsscpre  41228  dihopelvalcpre  41242  dihlss  41244  dihord6apre  41250  dihord5b  41253  dihord5apre  41256
  Copyright terms: Public domain W3C validator