Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgnvo Structured version   Visualization version   GIF version

Theorem neicvgnvo 44077
Description: If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgnvo (𝜑𝐻 = 𝐻)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐺(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem neicvgnvo
StepHypRef Expression
1 neicvg.h . . . . 5 𝐻 = (𝐹 ∘ (𝐷𝐺))
21cnveqi 5828 . . . 4 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 cnvco 5839 . . . 4 (𝐹 ∘ (𝐷𝐺)) = ((𝐷𝐺) ∘ 𝐹)
4 cnvco 5839 . . . . 5 (𝐷𝐺) = (𝐺𝐷)
54coeq1i 5813 . . . 4 ((𝐷𝐺) ∘ 𝐹) = ((𝐺𝐷) ∘ 𝐹)
62, 3, 53eqtri 2756 . . 3 𝐻 = ((𝐺𝐷) ∘ 𝐹)
7 neicvg.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
8 neicvg.d . . . . . . 7 𝐷 = (𝑃𝐵)
9 neicvg.r . . . . . . 7 (𝜑𝑁𝐻𝑀)
108, 1, 9neicvgbex 44074 . . . . . 6 (𝜑𝐵 ∈ V)
1110pwexd 5329 . . . . . 6 (𝜑 → 𝒫 𝐵 ∈ V)
12 neicvg.g . . . . . 6 𝐺 = (𝐵𝑂𝒫 𝐵)
13 neicvg.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
147, 10, 11, 12, 13fsovcnvd 43976 . . . . 5 (𝜑𝐺 = 𝐹)
15 neicvg.p . . . . . 6 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1615, 8, 10dssmapnvod 43982 . . . . 5 (𝜑𝐷 = 𝐷)
1714, 16coeq12d 5818 . . . 4 (𝜑 → (𝐺𝐷) = (𝐹𝐷))
187, 11, 10, 13, 12fsovcnvd 43976 . . . 4 (𝜑𝐹 = 𝐺)
1917, 18coeq12d 5818 . . 3 (𝜑 → ((𝐺𝐷) ∘ 𝐹) = ((𝐹𝐷) ∘ 𝐺))
206, 19eqtrid 2776 . 2 (𝜑𝐻 = ((𝐹𝐷) ∘ 𝐺))
21 coass 6226 . . 3 ((𝐹𝐷) ∘ 𝐺) = (𝐹 ∘ (𝐷𝐺))
2221, 1eqtr4i 2755 . 2 ((𝐹𝐷) ∘ 𝐺) = 𝐻
2320, 22eqtrdi 2780 1 (𝜑𝐻 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  cdif 3908  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  ccnv 5630  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778
This theorem is referenced by:  neicvgnvor  44078
  Copyright terms: Public domain W3C validator