![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgnvo | Structured version Visualization version GIF version |
Description: If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgnvo | ⊢ (𝜑 → ◡𝐻 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
2 | 1 | cnveqi 5875 | . . . 4 ⊢ ◡𝐻 = ◡(𝐹 ∘ (𝐷 ∘ 𝐺)) |
3 | cnvco 5886 | . . . 4 ⊢ ◡(𝐹 ∘ (𝐷 ∘ 𝐺)) = (◡(𝐷 ∘ 𝐺) ∘ ◡𝐹) | |
4 | cnvco 5886 | . . . . 5 ⊢ ◡(𝐷 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐷) | |
5 | 4 | coeq1i 5860 | . . . 4 ⊢ (◡(𝐷 ∘ 𝐺) ∘ ◡𝐹) = ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) |
6 | 2, 3, 5 | 3eqtri 2765 | . . 3 ⊢ ◡𝐻 = ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) |
7 | neicvg.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
8 | neicvg.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
9 | neicvg.r | . . . . . . 7 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
10 | 8, 1, 9 | neicvgbex 42863 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | 10 | pwexd 5378 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
12 | neicvg.g | . . . . . 6 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
13 | neicvg.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
14 | 7, 10, 11, 12, 13 | fsovcnvd 42765 | . . . . 5 ⊢ (𝜑 → ◡𝐺 = 𝐹) |
15 | neicvg.p | . . . . . 6 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
16 | 15, 8, 10 | dssmapnvod 42771 | . . . . 5 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
17 | 14, 16 | coeq12d 5865 | . . . 4 ⊢ (𝜑 → (◡𝐺 ∘ ◡𝐷) = (𝐹 ∘ 𝐷)) |
18 | 7, 11, 10, 13, 12 | fsovcnvd 42765 | . . . 4 ⊢ (𝜑 → ◡𝐹 = 𝐺) |
19 | 17, 18 | coeq12d 5865 | . . 3 ⊢ (𝜑 → ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) = ((𝐹 ∘ 𝐷) ∘ 𝐺)) |
20 | 6, 19 | eqtrid 2785 | . 2 ⊢ (𝜑 → ◡𝐻 = ((𝐹 ∘ 𝐷) ∘ 𝐺)) |
21 | coass 6265 | . . 3 ⊢ ((𝐹 ∘ 𝐷) ∘ 𝐺) = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
22 | 21, 1 | eqtr4i 2764 | . 2 ⊢ ((𝐹 ∘ 𝐷) ∘ 𝐺) = 𝐻 |
23 | 20, 22 | eqtrdi 2789 | 1 ⊢ (𝜑 → ◡𝐻 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 ∖ cdif 3946 𝒫 cpw 4603 class class class wbr 5149 ↦ cmpt 5232 ◡ccnv 5676 ∘ ccom 5681 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 ↑m cmap 8820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 |
This theorem is referenced by: neicvgnvor 42867 |
Copyright terms: Public domain | W3C validator |