Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgnvo | Structured version Visualization version GIF version |
Description: If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgnvo | ⊢ (𝜑 → ◡𝐻 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
2 | 1 | cnveqi 5711 | . . . 4 ⊢ ◡𝐻 = ◡(𝐹 ∘ (𝐷 ∘ 𝐺)) |
3 | cnvco 5722 | . . . 4 ⊢ ◡(𝐹 ∘ (𝐷 ∘ 𝐺)) = (◡(𝐷 ∘ 𝐺) ∘ ◡𝐹) | |
4 | cnvco 5722 | . . . . 5 ⊢ ◡(𝐷 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐷) | |
5 | 4 | coeq1i 5696 | . . . 4 ⊢ (◡(𝐷 ∘ 𝐺) ∘ ◡𝐹) = ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) |
6 | 2, 3, 5 | 3eqtri 2765 | . . 3 ⊢ ◡𝐻 = ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) |
7 | neicvg.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
8 | neicvg.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
9 | neicvg.r | . . . . . . 7 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
10 | 8, 1, 9 | neicvgbex 41252 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | 10 | pwexd 5243 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
12 | neicvg.g | . . . . . 6 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
13 | neicvg.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
14 | 7, 10, 11, 12, 13 | fsovcnvd 41152 | . . . . 5 ⊢ (𝜑 → ◡𝐺 = 𝐹) |
15 | neicvg.p | . . . . . 6 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
16 | 15, 8, 10 | dssmapnvod 41158 | . . . . 5 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
17 | 14, 16 | coeq12d 5701 | . . . 4 ⊢ (𝜑 → (◡𝐺 ∘ ◡𝐷) = (𝐹 ∘ 𝐷)) |
18 | 7, 11, 10, 13, 12 | fsovcnvd 41152 | . . . 4 ⊢ (𝜑 → ◡𝐹 = 𝐺) |
19 | 17, 18 | coeq12d 5701 | . . 3 ⊢ (𝜑 → ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) = ((𝐹 ∘ 𝐷) ∘ 𝐺)) |
20 | 6, 19 | syl5eq 2785 | . 2 ⊢ (𝜑 → ◡𝐻 = ((𝐹 ∘ 𝐷) ∘ 𝐺)) |
21 | coass 6092 | . . 3 ⊢ ((𝐹 ∘ 𝐷) ∘ 𝐺) = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
22 | 21, 1 | eqtr4i 2764 | . 2 ⊢ ((𝐹 ∘ 𝐷) ∘ 𝐺) = 𝐻 |
23 | 20, 22 | eqtrdi 2789 | 1 ⊢ (𝜑 → ◡𝐻 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 {crab 3057 Vcvv 3397 ∖ cdif 3838 𝒫 cpw 4485 class class class wbr 5027 ↦ cmpt 5107 ◡ccnv 5518 ∘ ccom 5523 ‘cfv 6333 (class class class)co 7164 ∈ cmpo 7166 ↑m cmap 8430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-1st 7707 df-2nd 7708 df-map 8432 |
This theorem is referenced by: neicvgnvor 41256 |
Copyright terms: Public domain | W3C validator |