Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgnvo Structured version   Visualization version   GIF version

Theorem neicvgnvo 41678
Description: If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgnvo (𝜑𝐻 = 𝐻)
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐺(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem neicvgnvo
StepHypRef Expression
1 neicvg.h . . . . 5 𝐻 = (𝐹 ∘ (𝐷𝐺))
21cnveqi 5780 . . . 4 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 cnvco 5791 . . . 4 (𝐹 ∘ (𝐷𝐺)) = ((𝐷𝐺) ∘ 𝐹)
4 cnvco 5791 . . . . 5 (𝐷𝐺) = (𝐺𝐷)
54coeq1i 5765 . . . 4 ((𝐷𝐺) ∘ 𝐹) = ((𝐺𝐷) ∘ 𝐹)
62, 3, 53eqtri 2771 . . 3 𝐻 = ((𝐺𝐷) ∘ 𝐹)
7 neicvg.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
8 neicvg.d . . . . . . 7 𝐷 = (𝑃𝐵)
9 neicvg.r . . . . . . 7 (𝜑𝑁𝐻𝑀)
108, 1, 9neicvgbex 41675 . . . . . 6 (𝜑𝐵 ∈ V)
1110pwexd 5305 . . . . . 6 (𝜑 → 𝒫 𝐵 ∈ V)
12 neicvg.g . . . . . 6 𝐺 = (𝐵𝑂𝒫 𝐵)
13 neicvg.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
147, 10, 11, 12, 13fsovcnvd 41575 . . . . 5 (𝜑𝐺 = 𝐹)
15 neicvg.p . . . . . 6 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1615, 8, 10dssmapnvod 41581 . . . . 5 (𝜑𝐷 = 𝐷)
1714, 16coeq12d 5770 . . . 4 (𝜑 → (𝐺𝐷) = (𝐹𝐷))
187, 11, 10, 13, 12fsovcnvd 41575 . . . 4 (𝜑𝐹 = 𝐺)
1917, 18coeq12d 5770 . . 3 (𝜑 → ((𝐺𝐷) ∘ 𝐹) = ((𝐹𝐷) ∘ 𝐺))
206, 19eqtrid 2791 . 2 (𝜑𝐻 = ((𝐹𝐷) ∘ 𝐺))
21 coass 6166 . . 3 ((𝐹𝐷) ∘ 𝐺) = (𝐹 ∘ (𝐷𝐺))
2221, 1eqtr4i 2770 . 2 ((𝐹𝐷) ∘ 𝐺) = 𝐻
2320, 22eqtrdi 2795 1 (𝜑𝐻 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  {crab 3069  Vcvv 3430  cdif 3888  𝒫 cpw 4538   class class class wbr 5078  cmpt 5161  ccnv 5587  ccom 5592  cfv 6430  (class class class)co 7268  cmpo 7270  m cmap 8589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-map 8591
This theorem is referenced by:  neicvgnvor  41679
  Copyright terms: Public domain W3C validator