![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgnvo | Structured version Visualization version GIF version |
Description: If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgnvo | ⊢ (𝜑 → ◡𝐻 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
2 | 1 | cnveqi 5498 | . . . 4 ⊢ ◡𝐻 = ◡(𝐹 ∘ (𝐷 ∘ 𝐺)) |
3 | cnvco 5509 | . . . 4 ⊢ ◡(𝐹 ∘ (𝐷 ∘ 𝐺)) = (◡(𝐷 ∘ 𝐺) ∘ ◡𝐹) | |
4 | cnvco 5509 | . . . . 5 ⊢ ◡(𝐷 ∘ 𝐺) = (◡𝐺 ∘ ◡𝐷) | |
5 | 4 | coeq1i 5483 | . . . 4 ⊢ (◡(𝐷 ∘ 𝐺) ∘ ◡𝐹) = ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) |
6 | 2, 3, 5 | 3eqtri 2823 | . . 3 ⊢ ◡𝐻 = ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) |
7 | neicvg.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
8 | neicvg.d | . . . . . . 7 ⊢ 𝐷 = (𝑃‘𝐵) | |
9 | neicvg.r | . . . . . . 7 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
10 | 8, 1, 9 | neicvgbex 39179 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | 10 | pwexd 5047 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
12 | neicvg.g | . . . . . 6 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
13 | neicvg.f | . . . . . 6 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
14 | 7, 10, 11, 12, 13 | fsovcnvd 39077 | . . . . 5 ⊢ (𝜑 → ◡𝐺 = 𝐹) |
15 | neicvg.p | . . . . . 6 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
16 | 15, 8, 10 | dssmapnvod 39083 | . . . . 5 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
17 | 14, 16 | coeq12d 5488 | . . . 4 ⊢ (𝜑 → (◡𝐺 ∘ ◡𝐷) = (𝐹 ∘ 𝐷)) |
18 | 7, 11, 10, 13, 12 | fsovcnvd 39077 | . . . 4 ⊢ (𝜑 → ◡𝐹 = 𝐺) |
19 | 17, 18 | coeq12d 5488 | . . 3 ⊢ (𝜑 → ((◡𝐺 ∘ ◡𝐷) ∘ ◡𝐹) = ((𝐹 ∘ 𝐷) ∘ 𝐺)) |
20 | 6, 19 | syl5eq 2843 | . 2 ⊢ (𝜑 → ◡𝐻 = ((𝐹 ∘ 𝐷) ∘ 𝐺)) |
21 | coass 5871 | . . 3 ⊢ ((𝐹 ∘ 𝐷) ∘ 𝐺) = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
22 | 21, 1 | eqtr4i 2822 | . 2 ⊢ ((𝐹 ∘ 𝐷) ∘ 𝐺) = 𝐻 |
23 | 20, 22 | syl6eq 2847 | 1 ⊢ (𝜑 → ◡𝐻 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 {crab 3091 Vcvv 3383 ∖ cdif 3764 𝒫 cpw 4347 class class class wbr 4841 ↦ cmpt 4920 ◡ccnv 5309 ∘ ccom 5314 ‘cfv 6099 (class class class)co 6876 ↦ cmpt2 6878 ↑𝑚 cmap 8093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-map 8095 |
This theorem is referenced by: neicvgnvor 39183 |
Copyright terms: Public domain | W3C validator |