MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupsslem Structured version   Visualization version   GIF version

Theorem xrsupsslem 13235
Description: Lemma for xrsupss 13237. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrsupsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupsslem
StepHypRef Expression
1 raleq 3308 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦))
2 rexeq 3309 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
32imbi2d 341 . . . . . . 7 (𝐴 = ∅ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
43ralbidv 3171 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
51, 4anbi12d 632 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
65rexbidv 3172 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
7 sup3 12120 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8 rexr 11209 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 616 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
109reximi2 3079 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
12 elxr 13045 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 486 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
14 pnfnlt 13057 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ +∞ < 𝑥)
1514adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ +∞ < 𝑥)
16 breq1 5112 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑦 < 𝑥 ↔ +∞ < 𝑥))
1716notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1817adantl 483 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1915, 18mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ 𝑦 < 𝑥)
2019pm2.21d 121 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = +∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
2120ex 414 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2221ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
23 ssel 3941 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
24 mnflt 13052 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → -∞ < 𝑧)
2523, 24syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴 → -∞ < 𝑧))
2625ancld 552 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴 ∧ -∞ < 𝑧)))
2726eximdv 1921 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧)))
28 n0 4310 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
29 df-rex 3071 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 -∞ < 𝑧 ↔ ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧))
3027, 28, 293imtr4g 296 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 -∞ < 𝑧))
3130imp 408 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 -∞ < 𝑧)
3231a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
3332ad2antrr 725 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
34 breq1 5112 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (𝑦 < 𝑥 ↔ -∞ < 𝑥))
35 breq1 5112 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑦 < 𝑧 ↔ -∞ < 𝑧))
3635rexbidv 3172 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 -∞ < 𝑧))
3734, 36imbi12d 345 . . . . . . . . . . . . . . . . . 18 (𝑦 = -∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3837adantl 483 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3933, 38mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
4039ex 414 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4140adantr 482 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4213, 22, 413jaod 1429 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4312, 42biimtrid 241 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4443ex 414 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4544ralimdv2 3157 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4645anim2d 613 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4746reximdva 3162 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
48473adant3 1133 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
50493expa 1119 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
51 ralnex 3072 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
52 rexnal 3100 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
53 ssel2 3943 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 11263 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥𝑥𝑦))
5554ord 863 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5653, 55sylan 581 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5756an32s 651 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑦𝑥𝑥𝑦))
5857reximdva 3162 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
5952, 58biimtrrid 242 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
6059ralimdva 3161 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6160imp 408 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6251, 61sylan2br 596 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
63 breq2 5113 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
6463cbvrexvw 3225 . . . . . . . . 9 (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑧𝐴 𝑥𝑧)
6564ralbii 3093 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
6662, 65sylib 217 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
67 pnfxr 11217 . . . . . . . 8 +∞ ∈ ℝ*
68 ssel 3941 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
69 rexr 11209 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
70 pnfnlt 13057 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
7169, 70syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ +∞ < 𝑦)
7268, 71syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ +∞ < 𝑦))
7372ralrimiv 3139 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ +∞ < 𝑦)
7473adantr 482 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦𝐴 ¬ +∞ < 𝑦)
75 peano2re 11336 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
76 breq1 5112 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 + 1) → (𝑥𝑧 ↔ (𝑦 + 1) ≤ 𝑧))
7776rexbidv 3172 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 + 1) → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧))
7877rspcva 3581 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
7978adantrr 716 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ)) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8079ancoms 460 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ (𝑦 + 1) ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8175, 80sylan2 594 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
82 ssel2 3943 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
83 ltp1 12003 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8483adantr 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 < (𝑦 + 1))
8575ancli 550 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → (𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ))
86 ltletr 11255 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
87863expa 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8885, 87sylan 581 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8984, 88mpand 694 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9089ancoms 460 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9182, 90sylan 581 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9291an32s 651 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9392reximdva 3162 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9493adantll 713 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9581, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧)
9695exp31 421 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
99 xrltnr 13048 . . . . . . . . . . . . . . . . . 18 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
10067, 99ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ +∞ < +∞
101 breq1 5112 . . . . . . . . . . . . . . . . 17 (𝑦 = +∞ → (𝑦 < +∞ ↔ +∞ < +∞))
102100, 101mtbiri 327 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ¬ 𝑦 < +∞)
103102pm2.21d 121 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
1041032a1d 26 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
105 0re 11165 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
106 breq1 5112 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑥𝑧 ↔ 0 ≤ 𝑧))
107106rexbidv 3172 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 0 ≤ 𝑧))
108107rspcva 3581 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 0 ≤ 𝑧)
109105, 108mpan 689 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → ∃𝑧𝐴 0 ≤ 𝑧)
11082, 24syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → -∞ < 𝑧)
111110a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (0 ≤ 𝑧 → -∞ < 𝑧))
112111reximdva 3162 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 0 ≤ 𝑧 → ∃𝑧𝐴 -∞ < 𝑧))
113109, 112mpan9 508 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 -∞ < 𝑧)
114113, 36imbitrrid 245 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧))
115114a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
116115expd 417 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11798, 104, 1163jaoi 1428 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11812, 117sylbi 216 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
120119imp 408 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
121120ralrimiv 3139 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
12274, 121jca 513 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
123 breq1 5112 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
124123notbid 318 . . . . . . . . . . 11 (𝑥 = +∞ → (¬ 𝑥 < 𝑦 ↔ ¬ +∞ < 𝑦))
125124ralbidv 3171 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ +∞ < 𝑦))
126 breq2 5113 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
127126imbi1d 342 . . . . . . . . . . 11 (𝑥 = +∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
128127ralbidv 3171 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
129125, 128anbi12d 632 . . . . . . . . 9 (𝑥 = +∞ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
130129rspcev 3583 . . . . . . . 8 ((+∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13167, 122, 130sylancr 588 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13266, 131syldan 592 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
133132adantlr 714 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13450, 133pm2.61dan 812 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
135 mnfxr 11220 . . . . . 6 -∞ ∈ ℝ*
136 ral0 4474 . . . . . . 7 𝑦 ∈ ∅ ¬ -∞ < 𝑦
137 nltmnf 13058 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
138137pm2.21d 121 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
139138rgen 3063 . . . . . . 7 𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)
140136, 139pm3.2i 472 . . . . . 6 (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
141 breq1 5112 . . . . . . . . . 10 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
142141notbid 318 . . . . . . . . 9 (𝑥 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ -∞ < 𝑦))
143142ralbidv 3171 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ -∞ < 𝑦))
144 breq2 5113 . . . . . . . . . 10 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
145144imbi1d 342 . . . . . . . . 9 (𝑥 = -∞ → ((𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
146145ralbidv 3171 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
147143, 146anbi12d 632 . . . . . . 7 (𝑥 = -∞ → ((∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
148147rspcev 3583 . . . . . 6 ((-∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
149135, 140, 148mp2an 691 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
1516, 134, 150pm2.61ne 3027 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
152151adantl 483 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
153 ssel 3941 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 70syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ +∞ < 𝑦))
155154ralrimiv 3139 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ +∞ < 𝑦)
156 breq2 5113 . . . . . . 7 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
157156rspcev 3583 . . . . . 6 ((+∞ ∈ 𝐴𝑦 < +∞) → ∃𝑧𝐴 𝑦 < 𝑧)
158157ex 414 . . . . 5 (+∞ ∈ 𝐴 → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
159158ralrimivw 3144 . . . 4 (+∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
160155, 159anim12i 614 . . 3 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
16167, 160, 130sylancr 588 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
162152, 161jaodan 957 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2940  wral 3061  wrex 3070  wss 3914  c0 4286   class class class wbr 5109  (class class class)co 7361  cr 11058  0cc0 11059  1c1 11060   + caddc 11062  +∞cpnf 11194  -∞cmnf 11195  *cxr 11196   < clt 11197  cle 11198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396
This theorem is referenced by:  xrsupss  13237
  Copyright terms: Public domain W3C validator