MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupsslem Structured version   Visualization version   GIF version

Theorem xrsupsslem 12344
Description: Lemma for xrsupss 12346. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrsupsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupsslem
StepHypRef Expression
1 raleq 3286 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦))
2 rexeq 3287 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
32imbi2d 331 . . . . . . 7 (𝐴 = ∅ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
43ralbidv 3133 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
51, 4anbi12d 624 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
65rexbidv 3199 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
7 sup3 11238 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8 rexr 10343 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 608 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
109reximi2 3156 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
12 elxr 12155 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 477 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
14 pnfnlt 12167 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ +∞ < 𝑥)
1514adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ +∞ < 𝑥)
16 breq1 4814 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑦 < 𝑥 ↔ +∞ < 𝑥))
1716notbid 309 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1817adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1915, 18mpbird 248 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ 𝑦 < 𝑥)
2019pm2.21d 119 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = +∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
2120ex 401 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2221ad2antlr 718 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
23 ssel 3757 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
24 mnflt 12162 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → -∞ < 𝑧)
2523, 24syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴 → -∞ < 𝑧))
2625ancld 546 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴 ∧ -∞ < 𝑧)))
2726eximdv 2012 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧)))
28 n0 4097 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
29 df-rex 3061 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 -∞ < 𝑧 ↔ ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧))
3027, 28, 293imtr4g 287 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 -∞ < 𝑧))
3130imp 395 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 -∞ < 𝑧)
3231a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
3332ad2antrr 717 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
34 breq1 4814 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (𝑦 < 𝑥 ↔ -∞ < 𝑥))
35 breq1 4814 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑦 < 𝑧 ↔ -∞ < 𝑧))
3635rexbidv 3199 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 -∞ < 𝑧))
3734, 36imbi12d 335 . . . . . . . . . . . . . . . . . 18 (𝑦 = -∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3837adantl 473 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3933, 38mpbird 248 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
4039ex 401 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4140adantr 472 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4213, 22, 413jaod 1553 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4312, 42syl5bi 233 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4443ex 401 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4544ralimdv2 3108 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4645anim2d 605 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4746reximdva 3163 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
48473adant3 1162 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
50493expa 1147 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
51 ralnex 3139 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
52 rexnal 3141 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
53 ssel2 3758 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 10395 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥𝑥𝑦))
5554ord 890 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5653, 55sylan 575 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5756an32s 642 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑦𝑥𝑥𝑦))
5857reximdva 3163 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
5952, 58syl5bir 234 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
6059ralimdva 3109 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6160imp 395 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6251, 61sylan2br 588 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
63 breq2 4815 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
6463cbvrexv 3320 . . . . . . . . 9 (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑧𝐴 𝑥𝑧)
6564ralbii 3127 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
6662, 65sylib 209 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
67 pnfxr 10350 . . . . . . . 8 +∞ ∈ ℝ*
68 ssel 3757 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
69 rexr 10343 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
70 pnfnlt 12167 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
7169, 70syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ +∞ < 𝑦)
7268, 71syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ +∞ < 𝑦))
7372ralrimiv 3112 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ +∞ < 𝑦)
7473adantr 472 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦𝐴 ¬ +∞ < 𝑦)
75 peano2re 10467 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
76 breq1 4814 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 + 1) → (𝑥𝑧 ↔ (𝑦 + 1) ≤ 𝑧))
7776rexbidv 3199 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 + 1) → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧))
7877rspcva 3460 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
7978adantrr 708 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ)) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8079ancoms 450 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ (𝑦 + 1) ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8175, 80sylan2 586 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
82 ssel2 3758 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
83 ltp1 11119 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8483adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 < (𝑦 + 1))
8575ancli 544 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → (𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ))
86 ltletr 10387 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
87863expa 1147 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8885, 87sylan 575 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8984, 88mpand 686 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9089ancoms 450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9182, 90sylan 575 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9291an32s 642 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9392reximdva 3163 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9493adantll 705 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9581, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧)
9695exp31 410 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
99 xrltnr 12158 . . . . . . . . . . . . . . . . . 18 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
10067, 99ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ +∞ < +∞
101 breq1 4814 . . . . . . . . . . . . . . . . 17 (𝑦 = +∞ → (𝑦 < +∞ ↔ +∞ < +∞))
102100, 101mtbiri 318 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ¬ 𝑦 < +∞)
103102pm2.21d 119 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
1041032a1d 26 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
105 0re 10299 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
106 breq1 4814 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑥𝑧 ↔ 0 ≤ 𝑧))
107106rexbidv 3199 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 0 ≤ 𝑧))
108107rspcva 3460 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 0 ≤ 𝑧)
109105, 108mpan 681 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → ∃𝑧𝐴 0 ≤ 𝑧)
11082, 24syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → -∞ < 𝑧)
111110a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (0 ≤ 𝑧 → -∞ < 𝑧))
112111reximdva 3163 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 0 ≤ 𝑧 → ∃𝑧𝐴 -∞ < 𝑧))
113109, 112mpan9 502 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 -∞ < 𝑧)
114113, 36syl5ibr 237 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧))
115114a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
116115expd 404 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11798, 104, 1163jaoi 1552 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11812, 117sylbi 208 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
120119imp 395 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
121120ralrimiv 3112 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
12274, 121jca 507 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
123 breq1 4814 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
124123notbid 309 . . . . . . . . . . 11 (𝑥 = +∞ → (¬ 𝑥 < 𝑦 ↔ ¬ +∞ < 𝑦))
125124ralbidv 3133 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ +∞ < 𝑦))
126 breq2 4815 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
127126imbi1d 332 . . . . . . . . . . 11 (𝑥 = +∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
128127ralbidv 3133 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
129125, 128anbi12d 624 . . . . . . . . 9 (𝑥 = +∞ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
130129rspcev 3462 . . . . . . . 8 ((+∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13167, 122, 130sylancr 581 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13266, 131syldan 585 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
133132adantlr 706 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13450, 133pm2.61dan 847 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
135 mnfxr 10354 . . . . . 6 -∞ ∈ ℝ*
136 ral0 4237 . . . . . . 7 𝑦 ∈ ∅ ¬ -∞ < 𝑦
137 nltmnf 12168 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
138137pm2.21d 119 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
139138rgen 3069 . . . . . . 7 𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)
140136, 139pm3.2i 462 . . . . . 6 (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
141 breq1 4814 . . . . . . . . . 10 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
142141notbid 309 . . . . . . . . 9 (𝑥 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ -∞ < 𝑦))
143142ralbidv 3133 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ -∞ < 𝑦))
144 breq2 4815 . . . . . . . . . 10 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
145144imbi1d 332 . . . . . . . . 9 (𝑥 = -∞ → ((𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
146145ralbidv 3133 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
147143, 146anbi12d 624 . . . . . . 7 (𝑥 = -∞ → ((∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
148147rspcev 3462 . . . . . 6 ((-∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
149135, 140, 148mp2an 683 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
1516, 134, 150pm2.61ne 3022 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
152151adantl 473 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
153 ssel 3757 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 70syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ +∞ < 𝑦))
155154ralrimiv 3112 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ +∞ < 𝑦)
156 breq2 4815 . . . . . . 7 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
157156rspcev 3462 . . . . . 6 ((+∞ ∈ 𝐴𝑦 < +∞) → ∃𝑧𝐴 𝑦 < 𝑧)
158157ex 401 . . . . 5 (+∞ ∈ 𝐴 → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
159158ralrimivw 3114 . . . 4 (+∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
160155, 159anim12i 606 . . 3 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
16167, 160, 130sylancr 581 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
162152, 161jaodan 980 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3o 1106  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3734  c0 4081   class class class wbr 4811  (class class class)co 6846  cr 10192  0cc0 10193  1c1 10194   + caddc 10196  +∞cpnf 10329  -∞cmnf 10330  *cxr 10331   < clt 10332  cle 10333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527
This theorem is referenced by:  xrsupss  12346
  Copyright terms: Public domain W3C validator