MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupsslem Structured version   Visualization version   GIF version

Theorem xrsupsslem 13369
Description: Lemma for xrsupss 13371. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrsupsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupsslem
StepHypRef Expression
1 raleq 3331 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦))
2 rexeq 3330 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
32imbi2d 340 . . . . . . 7 (𝐴 = ∅ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
43ralbidv 3184 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
51, 4anbi12d 631 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
65rexbidv 3185 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
7 sup3 12252 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8 rexr 11336 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 614 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
109reximi2 3085 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
12 elxr 13179 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
14 pnfnlt 13191 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ +∞ < 𝑥)
1514adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ +∞ < 𝑥)
16 breq1 5169 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑦 < 𝑥 ↔ +∞ < 𝑥))
1716notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1817adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1915, 18mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ 𝑦 < 𝑥)
2019pm2.21d 121 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = +∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
2120ex 412 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2221ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
23 ssel 4002 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
24 mnflt 13186 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → -∞ < 𝑧)
2523, 24syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴 → -∞ < 𝑧))
2625ancld 550 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴 ∧ -∞ < 𝑧)))
2726eximdv 1916 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧)))
28 n0 4376 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
29 df-rex 3077 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 -∞ < 𝑧 ↔ ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧))
3027, 28, 293imtr4g 296 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 -∞ < 𝑧))
3130imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 -∞ < 𝑧)
3231a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
3332ad2antrr 725 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
34 breq1 5169 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (𝑦 < 𝑥 ↔ -∞ < 𝑥))
35 breq1 5169 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑦 < 𝑧 ↔ -∞ < 𝑧))
3635rexbidv 3185 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 -∞ < 𝑧))
3734, 36imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = -∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3837adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3933, 38mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
4039ex 412 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4140adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4213, 22, 413jaod 1429 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4312, 42biimtrid 242 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4443ex 412 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4544ralimdv2 3169 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4645anim2d 611 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4746reximdva 3174 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
48473adant3 1132 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
50493expa 1118 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
51 ralnex 3078 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
52 rexnal 3106 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
53 ssel2 4003 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 11390 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥𝑥𝑦))
5554ord 863 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5653, 55sylan 579 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5756an32s 651 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑦𝑥𝑥𝑦))
5857reximdva 3174 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
5952, 58biimtrrid 243 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
6059ralimdva 3173 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6160imp 406 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6251, 61sylan2br 594 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
63 breq2 5170 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
6463cbvrexvw 3244 . . . . . . . . 9 (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑧𝐴 𝑥𝑧)
6564ralbii 3099 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
6662, 65sylib 218 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
67 pnfxr 11344 . . . . . . . 8 +∞ ∈ ℝ*
68 ssel 4002 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
69 rexr 11336 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
70 pnfnlt 13191 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
7169, 70syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ +∞ < 𝑦)
7268, 71syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ +∞ < 𝑦))
7372ralrimiv 3151 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ +∞ < 𝑦)
7473adantr 480 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦𝐴 ¬ +∞ < 𝑦)
75 peano2re 11463 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
76 breq1 5169 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 + 1) → (𝑥𝑧 ↔ (𝑦 + 1) ≤ 𝑧))
7776rexbidv 3185 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 + 1) → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧))
7877rspcva 3633 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
7978adantrr 716 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ)) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8079ancoms 458 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ (𝑦 + 1) ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8175, 80sylan2 592 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
82 ssel2 4003 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
83 ltp1 12134 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8483adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 < (𝑦 + 1))
8575ancli 548 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → (𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ))
86 ltletr 11382 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
87863expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8885, 87sylan 579 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8984, 88mpand 694 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9089ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9182, 90sylan 579 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9291an32s 651 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9392reximdva 3174 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9493adantll 713 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9581, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧)
9695exp31 419 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
99 xrltnr 13182 . . . . . . . . . . . . . . . . . 18 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
10067, 99ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ +∞ < +∞
101 breq1 5169 . . . . . . . . . . . . . . . . 17 (𝑦 = +∞ → (𝑦 < +∞ ↔ +∞ < +∞))
102100, 101mtbiri 327 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ¬ 𝑦 < +∞)
103102pm2.21d 121 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
1041032a1d 26 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
105 0re 11292 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
106 breq1 5169 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑥𝑧 ↔ 0 ≤ 𝑧))
107106rexbidv 3185 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 0 ≤ 𝑧))
108107rspcva 3633 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 0 ≤ 𝑧)
109105, 108mpan 689 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → ∃𝑧𝐴 0 ≤ 𝑧)
11082, 24syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → -∞ < 𝑧)
111110a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (0 ≤ 𝑧 → -∞ < 𝑧))
112111reximdva 3174 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 0 ≤ 𝑧 → ∃𝑧𝐴 -∞ < 𝑧))
113109, 112mpan9 506 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 -∞ < 𝑧)
114113, 36imbitrrid 246 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧))
115114a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
116115expd 415 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11798, 104, 1163jaoi 1428 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11812, 117sylbi 217 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
120119imp 406 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
121120ralrimiv 3151 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
12274, 121jca 511 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
123 breq1 5169 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
124123notbid 318 . . . . . . . . . . 11 (𝑥 = +∞ → (¬ 𝑥 < 𝑦 ↔ ¬ +∞ < 𝑦))
125124ralbidv 3184 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ +∞ < 𝑦))
126 breq2 5170 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
127126imbi1d 341 . . . . . . . . . . 11 (𝑥 = +∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
128127ralbidv 3184 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
129125, 128anbi12d 631 . . . . . . . . 9 (𝑥 = +∞ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
130129rspcev 3635 . . . . . . . 8 ((+∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13167, 122, 130sylancr 586 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13266, 131syldan 590 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
133132adantlr 714 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13450, 133pm2.61dan 812 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
135 mnfxr 11347 . . . . . 6 -∞ ∈ ℝ*
136 ral0 4536 . . . . . . 7 𝑦 ∈ ∅ ¬ -∞ < 𝑦
137 nltmnf 13192 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
138137pm2.21d 121 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
139138rgen 3069 . . . . . . 7 𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)
140136, 139pm3.2i 470 . . . . . 6 (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
141 breq1 5169 . . . . . . . . . 10 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
142141notbid 318 . . . . . . . . 9 (𝑥 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ -∞ < 𝑦))
143142ralbidv 3184 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ -∞ < 𝑦))
144 breq2 5170 . . . . . . . . . 10 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
145144imbi1d 341 . . . . . . . . 9 (𝑥 = -∞ → ((𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
146145ralbidv 3184 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
147143, 146anbi12d 631 . . . . . . 7 (𝑥 = -∞ → ((∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
148147rspcev 3635 . . . . . 6 ((-∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
149135, 140, 148mp2an 691 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
1516, 134, 150pm2.61ne 3033 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
152151adantl 481 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
153 ssel 4002 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 70syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ +∞ < 𝑦))
155154ralrimiv 3151 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ +∞ < 𝑦)
156 breq2 5170 . . . . . . 7 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
157156rspcev 3635 . . . . . 6 ((+∞ ∈ 𝐴𝑦 < +∞) → ∃𝑧𝐴 𝑦 < 𝑧)
158157ex 412 . . . . 5 (+∞ ∈ 𝐴 → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
159158ralrimivw 3156 . . . 4 (+∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
160155, 159anim12i 612 . . 3 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
16167, 160, 130sylancr 586 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
162152, 161jaodan 958 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  xrsupss  13371
  Copyright terms: Public domain W3C validator