MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupsslem Structured version   Visualization version   GIF version

Theorem xrsupsslem 13032
Description: Lemma for xrsupss 13034. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrsupsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupsslem
StepHypRef Expression
1 raleq 3341 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦))
2 rexeq 3342 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
32imbi2d 341 . . . . . . 7 (𝐴 = ∅ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
43ralbidv 3123 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
51, 4anbi12d 631 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
65rexbidv 3228 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
7 sup3 11924 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8 rexr 11014 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 615 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
109reximi2 3174 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
12 elxr 12843 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 485 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
14 pnfnlt 12855 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ +∞ < 𝑥)
1514adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ +∞ < 𝑥)
16 breq1 5082 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑦 < 𝑥 ↔ +∞ < 𝑥))
1716notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1817adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1915, 18mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ 𝑦 < 𝑥)
2019pm2.21d 121 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = +∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
2120ex 413 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2221ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
23 ssel 3919 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
24 mnflt 12850 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → -∞ < 𝑧)
2523, 24syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴 → -∞ < 𝑧))
2625ancld 551 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴 ∧ -∞ < 𝑧)))
2726eximdv 1924 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧)))
28 n0 4286 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
29 df-rex 3072 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 -∞ < 𝑧 ↔ ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧))
3027, 28, 293imtr4g 296 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 -∞ < 𝑧))
3130imp 407 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 -∞ < 𝑧)
3231a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
3332ad2antrr 723 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
34 breq1 5082 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (𝑦 < 𝑥 ↔ -∞ < 𝑥))
35 breq1 5082 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑦 < 𝑧 ↔ -∞ < 𝑧))
3635rexbidv 3228 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 -∞ < 𝑧))
3734, 36imbi12d 345 . . . . . . . . . . . . . . . . . 18 (𝑦 = -∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3837adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3933, 38mpbird 256 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
4039ex 413 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4140adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4213, 22, 413jaod 1427 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4312, 42syl5bi 241 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4443ex 413 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4544ralimdv2 3104 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4645anim2d 612 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4746reximdva 3205 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
48473adant3 1131 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
50493expa 1117 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
51 ralnex 3166 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
52 rexnal 3168 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
53 ssel2 3921 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 11067 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥𝑥𝑦))
5554ord 861 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5653, 55sylan 580 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5756an32s 649 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑦𝑥𝑥𝑦))
5857reximdva 3205 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
5952, 58syl5bir 242 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
6059ralimdva 3105 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6160imp 407 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6251, 61sylan2br 595 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
63 breq2 5083 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
6463cbvrexvw 3382 . . . . . . . . 9 (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑧𝐴 𝑥𝑧)
6564ralbii 3093 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
6662, 65sylib 217 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
67 pnfxr 11022 . . . . . . . 8 +∞ ∈ ℝ*
68 ssel 3919 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
69 rexr 11014 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
70 pnfnlt 12855 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
7169, 70syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ +∞ < 𝑦)
7268, 71syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ +∞ < 𝑦))
7372ralrimiv 3109 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ +∞ < 𝑦)
7473adantr 481 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦𝐴 ¬ +∞ < 𝑦)
75 peano2re 11140 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
76 breq1 5082 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 + 1) → (𝑥𝑧 ↔ (𝑦 + 1) ≤ 𝑧))
7776rexbidv 3228 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 + 1) → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧))
7877rspcva 3559 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
7978adantrr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ)) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8079ancoms 459 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ (𝑦 + 1) ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8175, 80sylan2 593 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
82 ssel2 3921 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
83 ltp1 11807 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8483adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 < (𝑦 + 1))
8575ancli 549 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → (𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ))
86 ltletr 11059 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
87863expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8885, 87sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8984, 88mpand 692 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9089ancoms 459 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9182, 90sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9291an32s 649 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9392reximdva 3205 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9493adantll 711 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9581, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧)
9695exp31 420 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
99 xrltnr 12846 . . . . . . . . . . . . . . . . . 18 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
10067, 99ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ +∞ < +∞
101 breq1 5082 . . . . . . . . . . . . . . . . 17 (𝑦 = +∞ → (𝑦 < +∞ ↔ +∞ < +∞))
102100, 101mtbiri 327 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ¬ 𝑦 < +∞)
103102pm2.21d 121 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
1041032a1d 26 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
105 0re 10970 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
106 breq1 5082 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑥𝑧 ↔ 0 ≤ 𝑧))
107106rexbidv 3228 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 0 ≤ 𝑧))
108107rspcva 3559 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 0 ≤ 𝑧)
109105, 108mpan 687 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → ∃𝑧𝐴 0 ≤ 𝑧)
11082, 24syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → -∞ < 𝑧)
111110a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (0 ≤ 𝑧 → -∞ < 𝑧))
112111reximdva 3205 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 0 ≤ 𝑧 → ∃𝑧𝐴 -∞ < 𝑧))
113109, 112mpan9 507 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 -∞ < 𝑧)
114113, 36syl5ibr 245 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧))
115114a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
116115expd 416 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11798, 104, 1163jaoi 1426 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11812, 117sylbi 216 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
120119imp 407 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
121120ralrimiv 3109 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
12274, 121jca 512 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
123 breq1 5082 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
124123notbid 318 . . . . . . . . . . 11 (𝑥 = +∞ → (¬ 𝑥 < 𝑦 ↔ ¬ +∞ < 𝑦))
125124ralbidv 3123 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ +∞ < 𝑦))
126 breq2 5083 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
127126imbi1d 342 . . . . . . . . . . 11 (𝑥 = +∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
128127ralbidv 3123 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
129125, 128anbi12d 631 . . . . . . . . 9 (𝑥 = +∞ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
130129rspcev 3561 . . . . . . . 8 ((+∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13167, 122, 130sylancr 587 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13266, 131syldan 591 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
133132adantlr 712 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13450, 133pm2.61dan 810 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
135 mnfxr 11025 . . . . . 6 -∞ ∈ ℝ*
136 ral0 4449 . . . . . . 7 𝑦 ∈ ∅ ¬ -∞ < 𝑦
137 nltmnf 12856 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
138137pm2.21d 121 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
139138rgen 3076 . . . . . . 7 𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)
140136, 139pm3.2i 471 . . . . . 6 (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
141 breq1 5082 . . . . . . . . . 10 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
142141notbid 318 . . . . . . . . 9 (𝑥 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ -∞ < 𝑦))
143142ralbidv 3123 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ -∞ < 𝑦))
144 breq2 5083 . . . . . . . . . 10 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
145144imbi1d 342 . . . . . . . . 9 (𝑥 = -∞ → ((𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
146145ralbidv 3123 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
147143, 146anbi12d 631 . . . . . . 7 (𝑥 = -∞ → ((∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
148147rspcev 3561 . . . . . 6 ((-∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
149135, 140, 148mp2an 689 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
1516, 134, 150pm2.61ne 3032 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
152151adantl 482 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
153 ssel 3919 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 70syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ +∞ < 𝑦))
155154ralrimiv 3109 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ +∞ < 𝑦)
156 breq2 5083 . . . . . . 7 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
157156rspcev 3561 . . . . . 6 ((+∞ ∈ 𝐴𝑦 < +∞) → ∃𝑧𝐴 𝑦 < 𝑧)
158157ex 413 . . . . 5 (+∞ ∈ 𝐴 → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
159158ralrimivw 3111 . . . 4 (+∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
160155, 159anim12i 613 . . 3 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
16167, 160, 130sylancr 587 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
162152, 161jaodan 955 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1542  wex 1786  wcel 2110  wne 2945  wral 3066  wrex 3067  wss 3892  c0 4262   class class class wbr 5079  (class class class)co 7269  cr 10863  0cc0 10864  1c1 10865   + caddc 10867  +∞cpnf 10999  -∞cmnf 11000  *cxr 11001   < clt 11002  cle 11003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200
This theorem is referenced by:  xrsupss  13034
  Copyright terms: Public domain W3C validator