MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carduni Structured version   Visualization version   GIF version

Theorem carduni 9670
Description: The union of a set of cardinals is a cardinal. Theorem 18.14 of [Monk1] p. 133. (Contributed by Mario Carneiro, 20-Jan-2013.)
Assertion
Ref Expression
carduni (𝐴𝑉 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (card‘ 𝐴) = 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem carduni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssonuni 7607 . . . . 5 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
2 fveq2 6756 . . . . . . . . 9 (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦))
3 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
42, 3eqeq12d 2754 . . . . . . . 8 (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦))
54rspcv 3547 . . . . . . 7 (𝑦𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (card‘𝑦) = 𝑦))
6 cardon 9633 . . . . . . . 8 (card‘𝑦) ∈ On
7 eleq1 2826 . . . . . . . 8 ((card‘𝑦) = 𝑦 → ((card‘𝑦) ∈ On ↔ 𝑦 ∈ On))
86, 7mpbii 232 . . . . . . 7 ((card‘𝑦) = 𝑦𝑦 ∈ On)
95, 8syl6com 37 . . . . . 6 (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (𝑦𝐴𝑦 ∈ On))
109ssrdv 3923 . . . . 5 (∀𝑥𝐴 (card‘𝑥) = 𝑥𝐴 ⊆ On)
111, 10impel 505 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → 𝐴 ∈ On)
12 cardonle 9646 . . . 4 ( 𝐴 ∈ On → (card‘ 𝐴) ⊆ 𝐴)
1311, 12syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → (card‘ 𝐴) ⊆ 𝐴)
14 cardon 9633 . . . . 5 (card‘ 𝐴) ∈ On
1514onirri 6358 . . . 4 ¬ (card‘ 𝐴) ∈ (card‘ 𝐴)
16 eluni 4839 . . . . . . . 8 ((card‘ 𝐴) ∈ 𝐴 ↔ ∃𝑦((card‘ 𝐴) ∈ 𝑦𝑦𝐴))
17 elssuni 4868 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴𝑦 𝐴)
18 ssdomg 8741 . . . . . . . . . . . . . . . . . . 19 ( 𝐴 ∈ On → (𝑦 𝐴𝑦 𝐴))
1918adantl 481 . . . . . . . . . . . . . . . . . 18 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦 𝐴𝑦 𝐴))
2017, 19syl5 34 . . . . . . . . . . . . . . . . 17 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴𝑦 𝐴))
21 id 22 . . . . . . . . . . . . . . . . . . 19 ((card‘𝑦) = 𝑦 → (card‘𝑦) = 𝑦)
22 onenon 9638 . . . . . . . . . . . . . . . . . . . 20 ((card‘𝑦) ∈ On → (card‘𝑦) ∈ dom card)
236, 22ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (card‘𝑦) ∈ dom card
2421, 23eqeltrrdi 2848 . . . . . . . . . . . . . . . . . 18 ((card‘𝑦) = 𝑦𝑦 ∈ dom card)
25 onenon 9638 . . . . . . . . . . . . . . . . . 18 ( 𝐴 ∈ On → 𝐴 ∈ dom card)
26 carddom2 9666 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 𝐴))
2724, 25, 26syl2an 595 . . . . . . . . . . . . . . . . 17 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 𝐴))
2820, 27sylibrd 258 . . . . . . . . . . . . . . . 16 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴 → (card‘𝑦) ⊆ (card‘ 𝐴)))
29 sseq1 3942 . . . . . . . . . . . . . . . . 17 ((card‘𝑦) = 𝑦 → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 ⊆ (card‘ 𝐴)))
3029adantr 480 . . . . . . . . . . . . . . . 16 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 ⊆ (card‘ 𝐴)))
3128, 30sylibd 238 . . . . . . . . . . . . . . 15 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴𝑦 ⊆ (card‘ 𝐴)))
32 ssel 3910 . . . . . . . . . . . . . . 15 (𝑦 ⊆ (card‘ 𝐴) → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))
3331, 32syl6 35 . . . . . . . . . . . . . 14 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴 → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴))))
3433ex 412 . . . . . . . . . . . . 13 ((card‘𝑦) = 𝑦 → ( 𝐴 ∈ On → (𝑦𝐴 → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
3534com3r 87 . . . . . . . . . . . 12 (𝑦𝐴 → ((card‘𝑦) = 𝑦 → ( 𝐴 ∈ On → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
365, 35syld 47 . . . . . . . . . . 11 (𝑦𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
3736com4r 94 . . . . . . . . . 10 ((card‘ 𝐴) ∈ 𝑦 → (𝑦𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
3837imp 406 . . . . . . . . 9 (((card‘ 𝐴) ∈ 𝑦𝑦𝐴) → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴))))
3938exlimiv 1934 . . . . . . . 8 (∃𝑦((card‘ 𝐴) ∈ 𝑦𝑦𝐴) → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4016, 39sylbi 216 . . . . . . 7 ((card‘ 𝐴) ∈ 𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4140com13 88 . . . . . 6 ( 𝐴 ∈ On → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ((card‘ 𝐴) ∈ 𝐴 → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4241imp 406 . . . . 5 (( 𝐴 ∈ On ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ((card‘ 𝐴) ∈ 𝐴 → (card‘ 𝐴) ∈ (card‘ 𝐴)))
4311, 42sylancom 587 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ((card‘ 𝐴) ∈ 𝐴 → (card‘ 𝐴) ∈ (card‘ 𝐴)))
4415, 43mtoi 198 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ¬ (card‘ 𝐴) ∈ 𝐴)
4514onordi 6356 . . . 4 Ord (card‘ 𝐴)
46 eloni 6261 . . . . 5 ( 𝐴 ∈ On → Ord 𝐴)
4711, 46syl 17 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → Ord 𝐴)
48 ordtri4 6288 . . . 4 ((Ord (card‘ 𝐴) ∧ Ord 𝐴) → ((card‘ 𝐴) = 𝐴 ↔ ((card‘ 𝐴) ⊆ 𝐴 ∧ ¬ (card‘ 𝐴) ∈ 𝐴)))
4945, 47, 48sylancr 586 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ((card‘ 𝐴) = 𝐴 ↔ ((card‘ 𝐴) ⊆ 𝐴 ∧ ¬ (card‘ 𝐴) ∈ 𝐴)))
5013, 44, 49mpbir2and 709 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → (card‘ 𝐴) = 𝐴)
5150ex 412 1 (𝐴𝑉 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (card‘ 𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  wss 3883   cuni 4836   class class class wbr 5070  dom cdm 5580  Ord word 6250  Oncon0 6251  cfv 6418  cdom 8689  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-card 9628
This theorem is referenced by:  cardiun  9671  carduniima  9783
  Copyright terms: Public domain W3C validator