| Step | Hyp | Ref
| Expression |
| 1 | | ssonuni 7801 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴
∈ On)) |
| 2 | | fveq2 6905 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦)) |
| 3 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 4 | 2, 3 | eqeq12d 2752 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦)) |
| 5 | 4 | rspcv 3617 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (card‘𝑦) = 𝑦)) |
| 6 | | cardon 9985 |
. . . . . . . 8
⊢
(card‘𝑦)
∈ On |
| 7 | | eleq1 2828 |
. . . . . . . 8
⊢
((card‘𝑦) =
𝑦 → ((card‘𝑦) ∈ On ↔ 𝑦 ∈ On)) |
| 8 | 6, 7 | mpbii 233 |
. . . . . . 7
⊢
((card‘𝑦) =
𝑦 → 𝑦 ∈ On) |
| 9 | 5, 8 | syl6com 37 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (card‘𝑥) = 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ On)) |
| 10 | 9 | ssrdv 3988 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (card‘𝑥) = 𝑥 → 𝐴 ⊆ On) |
| 11 | 1, 10 | impel 505 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → ∪ 𝐴 ∈ On) |
| 12 | | cardonle 9998 |
. . . 4
⊢ (∪ 𝐴
∈ On → (card‘∪ 𝐴) ⊆ ∪ 𝐴) |
| 13 | 11, 12 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → (card‘∪ 𝐴)
⊆ ∪ 𝐴) |
| 14 | | cardon 9985 |
. . . . 5
⊢
(card‘∪ 𝐴) ∈ On |
| 15 | 14 | onirri 6496 |
. . . 4
⊢ ¬
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴) |
| 16 | | eluni 4909 |
. . . . . . . 8
⊢
((card‘∪ 𝐴) ∈ ∪ 𝐴 ↔ ∃𝑦((card‘∪ 𝐴)
∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) |
| 17 | | elssuni 4936 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐴 → 𝑦 ⊆ ∪ 𝐴) |
| 18 | | ssdomg 9041 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ 𝐴
∈ On → (𝑦 ⊆
∪ 𝐴 → 𝑦 ≼ ∪ 𝐴)) |
| 19 | 18 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦
⊆ ∪ 𝐴 → 𝑦 ≼ ∪ 𝐴)) |
| 20 | 17, 19 | syl5 34 |
. . . . . . . . . . . . . . . . 17
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦 ∈
𝐴 → 𝑦 ≼ ∪ 𝐴)) |
| 21 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢
((card‘𝑦) =
𝑦 → (card‘𝑦) = 𝑦) |
| 22 | | onenon 9990 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((card‘𝑦)
∈ On → (card‘𝑦) ∈ dom card) |
| 23 | 6, 22 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(card‘𝑦)
∈ dom card |
| 24 | 21, 23 | eqeltrrdi 2849 |
. . . . . . . . . . . . . . . . . 18
⊢
((card‘𝑦) =
𝑦 → 𝑦 ∈ dom card) |
| 25 | | onenon 9990 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝐴
∈ On → ∪ 𝐴 ∈ dom card) |
| 26 | | carddom2 10018 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ dom card ∧ ∪ 𝐴
∈ dom card) → ((card‘𝑦) ⊆ (card‘∪ 𝐴)
↔ 𝑦 ≼ ∪ 𝐴)) |
| 27 | 24, 25, 26 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → ((card‘𝑦) ⊆ (card‘∪ 𝐴)
↔ 𝑦 ≼ ∪ 𝐴)) |
| 28 | 20, 27 | sylibrd 259 |
. . . . . . . . . . . . . . . 16
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦 ∈
𝐴 → (card‘𝑦) ⊆ (card‘∪ 𝐴))) |
| 29 | | sseq1 4008 |
. . . . . . . . . . . . . . . . 17
⊢
((card‘𝑦) =
𝑦 → ((card‘𝑦) ⊆ (card‘∪ 𝐴)
↔ 𝑦 ⊆
(card‘∪ 𝐴))) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → ((card‘𝑦) ⊆ (card‘∪ 𝐴)
↔ 𝑦 ⊆
(card‘∪ 𝐴))) |
| 31 | 28, 30 | sylibd 239 |
. . . . . . . . . . . . . . 15
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦 ∈
𝐴 → 𝑦 ⊆ (card‘∪ 𝐴))) |
| 32 | | ssel 3976 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ (card‘∪ 𝐴)
→ ((card‘∪ 𝐴) ∈ 𝑦 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))) |
| 33 | 31, 32 | syl6 35 |
. . . . . . . . . . . . . 14
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦 ∈
𝐴 → ((card‘∪ 𝐴)
∈ 𝑦 →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴)))) |
| 34 | 33 | ex 412 |
. . . . . . . . . . . . 13
⊢
((card‘𝑦) =
𝑦 → (∪ 𝐴
∈ On → (𝑦 ∈
𝐴 → ((card‘∪ 𝐴)
∈ 𝑦 →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴))))) |
| 35 | 34 | com3r 87 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → ((card‘𝑦) = 𝑦 → (∪ 𝐴 ∈ On →
((card‘∪ 𝐴) ∈ 𝑦 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))))) |
| 36 | 5, 35 | syld 47 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
((card‘∪ 𝐴) ∈ 𝑦 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))))) |
| 37 | 36 | com4r 94 |
. . . . . . . . . 10
⊢
((card‘∪ 𝐴) ∈ 𝑦 → (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴))))) |
| 38 | 37 | imp 406 |
. . . . . . . . 9
⊢
(((card‘∪ 𝐴) ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴)))) |
| 39 | 38 | exlimiv 1929 |
. . . . . . . 8
⊢
(∃𝑦((card‘∪
𝐴) ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴)))) |
| 40 | 16, 39 | sylbi 217 |
. . . . . . 7
⊢
((card‘∪ 𝐴) ∈ ∪ 𝐴 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴)))) |
| 41 | 40 | com13 88 |
. . . . . 6
⊢ (∪ 𝐴
∈ On → (∀𝑥
∈ 𝐴 (card‘𝑥) = 𝑥 → ((card‘∪ 𝐴)
∈ ∪ 𝐴 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴)))) |
| 42 | 41 | imp 406 |
. . . . 5
⊢ ((∪ 𝐴
∈ On ∧ ∀𝑥
∈ 𝐴 (card‘𝑥) = 𝑥) → ((card‘∪ 𝐴)
∈ ∪ 𝐴 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))) |
| 43 | 11, 42 | sylancom 588 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → ((card‘∪ 𝐴)
∈ ∪ 𝐴 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))) |
| 44 | 15, 43 | mtoi 199 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → ¬ (card‘∪ 𝐴)
∈ ∪ 𝐴) |
| 45 | 14 | onordi 6494 |
. . . 4
⊢ Ord
(card‘∪ 𝐴) |
| 46 | | eloni 6393 |
. . . . 5
⊢ (∪ 𝐴
∈ On → Ord ∪ 𝐴) |
| 47 | 11, 46 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → Ord ∪
𝐴) |
| 48 | | ordtri4 6420 |
. . . 4
⊢ ((Ord
(card‘∪ 𝐴) ∧ Ord ∪
𝐴) →
((card‘∪ 𝐴) = ∪ 𝐴 ↔ ((card‘∪ 𝐴)
⊆ ∪ 𝐴 ∧ ¬ (card‘∪ 𝐴)
∈ ∪ 𝐴))) |
| 49 | 45, 47, 48 | sylancr 587 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → ((card‘∪ 𝐴) =
∪ 𝐴 ↔ ((card‘∪ 𝐴)
⊆ ∪ 𝐴 ∧ ¬ (card‘∪ 𝐴)
∈ ∪ 𝐴))) |
| 50 | 13, 44, 49 | mpbir2and 713 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → (card‘∪ 𝐴) =
∪ 𝐴) |
| 51 | 50 | ex 412 |
1
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (card‘∪ 𝐴) =
∪ 𝐴)) |