MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carduni Structured version   Visualization version   GIF version

Theorem carduni 9093
Description: The union of a set of cardinals is a cardinal. Theorem 18.14 of [Monk1] p. 133. (Contributed by Mario Carneiro, 20-Jan-2013.)
Assertion
Ref Expression
carduni (𝐴𝑉 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (card‘ 𝐴) = 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem carduni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6411 . . . . . . . . . 10 (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦))
2 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
31, 2eqeq12d 2814 . . . . . . . . 9 (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦))
43rspcv 3493 . . . . . . . 8 (𝑦𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (card‘𝑦) = 𝑦))
5 cardon 9056 . . . . . . . . 9 (card‘𝑦) ∈ On
6 eleq1 2866 . . . . . . . . 9 ((card‘𝑦) = 𝑦 → ((card‘𝑦) ∈ On ↔ 𝑦 ∈ On))
75, 6mpbii 225 . . . . . . . 8 ((card‘𝑦) = 𝑦𝑦 ∈ On)
84, 7syl6com 37 . . . . . . 7 (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (𝑦𝐴𝑦 ∈ On))
98ssrdv 3804 . . . . . 6 (∀𝑥𝐴 (card‘𝑥) = 𝑥𝐴 ⊆ On)
10 ssonuni 7220 . . . . . 6 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
119, 10syl5 34 . . . . 5 (𝐴𝑉 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 𝐴 ∈ On))
1211imp 396 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → 𝐴 ∈ On)
13 cardonle 9069 . . . 4 ( 𝐴 ∈ On → (card‘ 𝐴) ⊆ 𝐴)
1412, 13syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → (card‘ 𝐴) ⊆ 𝐴)
15 cardon 9056 . . . . 5 (card‘ 𝐴) ∈ On
1615onirri 6047 . . . 4 ¬ (card‘ 𝐴) ∈ (card‘ 𝐴)
17 eluni 4631 . . . . . . . 8 ((card‘ 𝐴) ∈ 𝐴 ↔ ∃𝑦((card‘ 𝐴) ∈ 𝑦𝑦𝐴))
18 elssuni 4659 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴𝑦 𝐴)
19 ssdomg 8241 . . . . . . . . . . . . . . . . . . 19 ( 𝐴 ∈ On → (𝑦 𝐴𝑦 𝐴))
2019adantl 474 . . . . . . . . . . . . . . . . . 18 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦 𝐴𝑦 𝐴))
2118, 20syl5 34 . . . . . . . . . . . . . . . . 17 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴𝑦 𝐴))
22 id 22 . . . . . . . . . . . . . . . . . . 19 ((card‘𝑦) = 𝑦 → (card‘𝑦) = 𝑦)
23 onenon 9061 . . . . . . . . . . . . . . . . . . . 20 ((card‘𝑦) ∈ On → (card‘𝑦) ∈ dom card)
245, 23ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (card‘𝑦) ∈ dom card
2522, 24syl6eqelr 2887 . . . . . . . . . . . . . . . . . 18 ((card‘𝑦) = 𝑦𝑦 ∈ dom card)
26 onenon 9061 . . . . . . . . . . . . . . . . . 18 ( 𝐴 ∈ On → 𝐴 ∈ dom card)
27 carddom2 9089 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 𝐴))
2825, 26, 27syl2an 590 . . . . . . . . . . . . . . . . 17 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 𝐴))
2921, 28sylibrd 251 . . . . . . . . . . . . . . . 16 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴 → (card‘𝑦) ⊆ (card‘ 𝐴)))
30 sseq1 3822 . . . . . . . . . . . . . . . . 17 ((card‘𝑦) = 𝑦 → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 ⊆ (card‘ 𝐴)))
3130adantr 473 . . . . . . . . . . . . . . . 16 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 ⊆ (card‘ 𝐴)))
3229, 31sylibd 231 . . . . . . . . . . . . . . 15 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴𝑦 ⊆ (card‘ 𝐴)))
33 ssel 3792 . . . . . . . . . . . . . . 15 (𝑦 ⊆ (card‘ 𝐴) → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))
3432, 33syl6 35 . . . . . . . . . . . . . 14 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴 → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴))))
3534ex 402 . . . . . . . . . . . . 13 ((card‘𝑦) = 𝑦 → ( 𝐴 ∈ On → (𝑦𝐴 → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
3635com3r 87 . . . . . . . . . . . 12 (𝑦𝐴 → ((card‘𝑦) = 𝑦 → ( 𝐴 ∈ On → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
374, 36syld 47 . . . . . . . . . . 11 (𝑦𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
3837com4r 94 . . . . . . . . . 10 ((card‘ 𝐴) ∈ 𝑦 → (𝑦𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
3938imp 396 . . . . . . . . 9 (((card‘ 𝐴) ∈ 𝑦𝑦𝐴) → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4039exlimiv 2026 . . . . . . . 8 (∃𝑦((card‘ 𝐴) ∈ 𝑦𝑦𝐴) → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4117, 40sylbi 209 . . . . . . 7 ((card‘ 𝐴) ∈ 𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4241com13 88 . . . . . 6 ( 𝐴 ∈ On → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ((card‘ 𝐴) ∈ 𝐴 → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4342imp 396 . . . . 5 (( 𝐴 ∈ On ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ((card‘ 𝐴) ∈ 𝐴 → (card‘ 𝐴) ∈ (card‘ 𝐴)))
4412, 43sylancom 583 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ((card‘ 𝐴) ∈ 𝐴 → (card‘ 𝐴) ∈ (card‘ 𝐴)))
4516, 44mtoi 191 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ¬ (card‘ 𝐴) ∈ 𝐴)
4615onordi 6045 . . . 4 Ord (card‘ 𝐴)
47 eloni 5951 . . . . 5 ( 𝐴 ∈ On → Ord 𝐴)
4812, 47syl 17 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → Ord 𝐴)
49 ordtri4 5978 . . . 4 ((Ord (card‘ 𝐴) ∧ Ord 𝐴) → ((card‘ 𝐴) = 𝐴 ↔ ((card‘ 𝐴) ⊆ 𝐴 ∧ ¬ (card‘ 𝐴) ∈ 𝐴)))
5046, 48, 49sylancr 582 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ((card‘ 𝐴) = 𝐴 ↔ ((card‘ 𝐴) ⊆ 𝐴 ∧ ¬ (card‘ 𝐴) ∈ 𝐴)))
5114, 45, 50mpbir2and 705 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → (card‘ 𝐴) = 𝐴)
5251ex 402 1 (𝐴𝑉 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (card‘ 𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385   = wceq 1653  wex 1875  wcel 2157  wral 3089  wss 3769   cuni 4628   class class class wbr 4843  dom cdm 5312  Ord word 5940  Oncon0 5941  cfv 6101  cdom 8193  cardccrd 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-ord 5944  df-on 5945  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-card 9051
This theorem is referenced by:  cardiun  9094  carduniima  9205
  Copyright terms: Public domain W3C validator