MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carduni Structured version   Visualization version   GIF version

Theorem carduni 9896
Description: The union of a set of cardinals is a cardinal. Theorem 18.14 of [Monk1] p. 133. (Contributed by Mario Carneiro, 20-Jan-2013.)
Assertion
Ref Expression
carduni (𝐴𝑉 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (card‘ 𝐴) = 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem carduni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssonuni 7720 . . . . 5 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
2 fveq2 6826 . . . . . . . . 9 (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦))
3 id 22 . . . . . . . . 9 (𝑥 = 𝑦𝑥 = 𝑦)
42, 3eqeq12d 2745 . . . . . . . 8 (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦))
54rspcv 3575 . . . . . . 7 (𝑦𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (card‘𝑦) = 𝑦))
6 cardon 9859 . . . . . . . 8 (card‘𝑦) ∈ On
7 eleq1 2816 . . . . . . . 8 ((card‘𝑦) = 𝑦 → ((card‘𝑦) ∈ On ↔ 𝑦 ∈ On))
86, 7mpbii 233 . . . . . . 7 ((card‘𝑦) = 𝑦𝑦 ∈ On)
95, 8syl6com 37 . . . . . 6 (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (𝑦𝐴𝑦 ∈ On))
109ssrdv 3943 . . . . 5 (∀𝑥𝐴 (card‘𝑥) = 𝑥𝐴 ⊆ On)
111, 10impel 505 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → 𝐴 ∈ On)
12 cardonle 9872 . . . 4 ( 𝐴 ∈ On → (card‘ 𝐴) ⊆ 𝐴)
1311, 12syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → (card‘ 𝐴) ⊆ 𝐴)
14 cardon 9859 . . . . 5 (card‘ 𝐴) ∈ On
1514onirri 6425 . . . 4 ¬ (card‘ 𝐴) ∈ (card‘ 𝐴)
16 eluni 4864 . . . . . . . 8 ((card‘ 𝐴) ∈ 𝐴 ↔ ∃𝑦((card‘ 𝐴) ∈ 𝑦𝑦𝐴))
17 elssuni 4891 . . . . . . . . . . . . . . . . . 18 (𝑦𝐴𝑦 𝐴)
18 ssdomg 8932 . . . . . . . . . . . . . . . . . . 19 ( 𝐴 ∈ On → (𝑦 𝐴𝑦 𝐴))
1918adantl 481 . . . . . . . . . . . . . . . . . 18 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦 𝐴𝑦 𝐴))
2017, 19syl5 34 . . . . . . . . . . . . . . . . 17 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴𝑦 𝐴))
21 id 22 . . . . . . . . . . . . . . . . . . 19 ((card‘𝑦) = 𝑦 → (card‘𝑦) = 𝑦)
22 onenon 9864 . . . . . . . . . . . . . . . . . . . 20 ((card‘𝑦) ∈ On → (card‘𝑦) ∈ dom card)
236, 22ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (card‘𝑦) ∈ dom card
2421, 23eqeltrrdi 2837 . . . . . . . . . . . . . . . . . 18 ((card‘𝑦) = 𝑦𝑦 ∈ dom card)
25 onenon 9864 . . . . . . . . . . . . . . . . . 18 ( 𝐴 ∈ On → 𝐴 ∈ dom card)
26 carddom2 9892 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 𝐴))
2724, 25, 26syl2an 596 . . . . . . . . . . . . . . . . 17 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 𝐴))
2820, 27sylibrd 259 . . . . . . . . . . . . . . . 16 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴 → (card‘𝑦) ⊆ (card‘ 𝐴)))
29 sseq1 3963 . . . . . . . . . . . . . . . . 17 ((card‘𝑦) = 𝑦 → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 ⊆ (card‘ 𝐴)))
3029adantr 480 . . . . . . . . . . . . . . . 16 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → ((card‘𝑦) ⊆ (card‘ 𝐴) ↔ 𝑦 ⊆ (card‘ 𝐴)))
3128, 30sylibd 239 . . . . . . . . . . . . . . 15 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴𝑦 ⊆ (card‘ 𝐴)))
32 ssel 3931 . . . . . . . . . . . . . . 15 (𝑦 ⊆ (card‘ 𝐴) → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))
3331, 32syl6 35 . . . . . . . . . . . . . 14 (((card‘𝑦) = 𝑦 𝐴 ∈ On) → (𝑦𝐴 → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴))))
3433ex 412 . . . . . . . . . . . . 13 ((card‘𝑦) = 𝑦 → ( 𝐴 ∈ On → (𝑦𝐴 → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
3534com3r 87 . . . . . . . . . . . 12 (𝑦𝐴 → ((card‘𝑦) = 𝑦 → ( 𝐴 ∈ On → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
365, 35syld 47 . . . . . . . . . . 11 (𝑦𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → ((card‘ 𝐴) ∈ 𝑦 → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
3736com4r 94 . . . . . . . . . 10 ((card‘ 𝐴) ∈ 𝑦 → (𝑦𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴)))))
3837imp 406 . . . . . . . . 9 (((card‘ 𝐴) ∈ 𝑦𝑦𝐴) → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴))))
3938exlimiv 1930 . . . . . . . 8 (∃𝑦((card‘ 𝐴) ∈ 𝑦𝑦𝐴) → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4016, 39sylbi 217 . . . . . . 7 ((card‘ 𝐴) ∈ 𝐴 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ( 𝐴 ∈ On → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4140com13 88 . . . . . 6 ( 𝐴 ∈ On → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → ((card‘ 𝐴) ∈ 𝐴 → (card‘ 𝐴) ∈ (card‘ 𝐴))))
4241imp 406 . . . . 5 (( 𝐴 ∈ On ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ((card‘ 𝐴) ∈ 𝐴 → (card‘ 𝐴) ∈ (card‘ 𝐴)))
4311, 42sylancom 588 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ((card‘ 𝐴) ∈ 𝐴 → (card‘ 𝐴) ∈ (card‘ 𝐴)))
4415, 43mtoi 199 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ¬ (card‘ 𝐴) ∈ 𝐴)
4514onordi 6424 . . . 4 Ord (card‘ 𝐴)
46 eloni 6321 . . . . 5 ( 𝐴 ∈ On → Ord 𝐴)
4711, 46syl 17 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → Ord 𝐴)
48 ordtri4 6348 . . . 4 ((Ord (card‘ 𝐴) ∧ Ord 𝐴) → ((card‘ 𝐴) = 𝐴 ↔ ((card‘ 𝐴) ⊆ 𝐴 ∧ ¬ (card‘ 𝐴) ∈ 𝐴)))
4945, 47, 48sylancr 587 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → ((card‘ 𝐴) = 𝐴 ↔ ((card‘ 𝐴) ⊆ 𝐴 ∧ ¬ (card‘ 𝐴) ∈ 𝐴)))
5013, 44, 49mpbir2and 713 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 (card‘𝑥) = 𝑥) → (card‘ 𝐴) = 𝐴)
5150ex 412 1 (𝐴𝑉 → (∀𝑥𝐴 (card‘𝑥) = 𝑥 → (card‘ 𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wss 3905   cuni 4861   class class class wbr 5095  dom cdm 5623  Ord word 6310  Oncon0 6311  cfv 6486  cdom 8877  cardccrd 9850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-card 9854
This theorem is referenced by:  cardiun  9897  carduniima  10009
  Copyright terms: Public domain W3C validator