Step | Hyp | Ref
| Expression |
1 | | ssonuni 7630 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ On → ∪ 𝐴
∈ On)) |
2 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (card‘𝑥) = (card‘𝑦)) |
3 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
4 | 2, 3 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑦) = 𝑦)) |
5 | 4 | rspcv 3557 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (card‘𝑦) = 𝑦)) |
6 | | cardon 9702 |
. . . . . . . 8
⊢
(card‘𝑦)
∈ On |
7 | | eleq1 2826 |
. . . . . . . 8
⊢
((card‘𝑦) =
𝑦 → ((card‘𝑦) ∈ On ↔ 𝑦 ∈ On)) |
8 | 6, 7 | mpbii 232 |
. . . . . . 7
⊢
((card‘𝑦) =
𝑦 → 𝑦 ∈ On) |
9 | 5, 8 | syl6com 37 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (card‘𝑥) = 𝑥 → (𝑦 ∈ 𝐴 → 𝑦 ∈ On)) |
10 | 9 | ssrdv 3927 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (card‘𝑥) = 𝑥 → 𝐴 ⊆ On) |
11 | 1, 10 | impel 506 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → ∪ 𝐴 ∈ On) |
12 | | cardonle 9715 |
. . . 4
⊢ (∪ 𝐴
∈ On → (card‘∪ 𝐴) ⊆ ∪ 𝐴) |
13 | 11, 12 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → (card‘∪ 𝐴)
⊆ ∪ 𝐴) |
14 | | cardon 9702 |
. . . . 5
⊢
(card‘∪ 𝐴) ∈ On |
15 | 14 | onirri 6373 |
. . . 4
⊢ ¬
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴) |
16 | | eluni 4842 |
. . . . . . . 8
⊢
((card‘∪ 𝐴) ∈ ∪ 𝐴 ↔ ∃𝑦((card‘∪ 𝐴)
∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) |
17 | | elssuni 4871 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐴 → 𝑦 ⊆ ∪ 𝐴) |
18 | | ssdomg 8786 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ 𝐴
∈ On → (𝑦 ⊆
∪ 𝐴 → 𝑦 ≼ ∪ 𝐴)) |
19 | 18 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦
⊆ ∪ 𝐴 → 𝑦 ≼ ∪ 𝐴)) |
20 | 17, 19 | syl5 34 |
. . . . . . . . . . . . . . . . 17
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦 ∈
𝐴 → 𝑦 ≼ ∪ 𝐴)) |
21 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢
((card‘𝑦) =
𝑦 → (card‘𝑦) = 𝑦) |
22 | | onenon 9707 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((card‘𝑦)
∈ On → (card‘𝑦) ∈ dom card) |
23 | 6, 22 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(card‘𝑦)
∈ dom card |
24 | 21, 23 | eqeltrrdi 2848 |
. . . . . . . . . . . . . . . . . 18
⊢
((card‘𝑦) =
𝑦 → 𝑦 ∈ dom card) |
25 | | onenon 9707 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝐴
∈ On → ∪ 𝐴 ∈ dom card) |
26 | | carddom2 9735 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ dom card ∧ ∪ 𝐴
∈ dom card) → ((card‘𝑦) ⊆ (card‘∪ 𝐴)
↔ 𝑦 ≼ ∪ 𝐴)) |
27 | 24, 25, 26 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → ((card‘𝑦) ⊆ (card‘∪ 𝐴)
↔ 𝑦 ≼ ∪ 𝐴)) |
28 | 20, 27 | sylibrd 258 |
. . . . . . . . . . . . . . . 16
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦 ∈
𝐴 → (card‘𝑦) ⊆ (card‘∪ 𝐴))) |
29 | | sseq1 3946 |
. . . . . . . . . . . . . . . . 17
⊢
((card‘𝑦) =
𝑦 → ((card‘𝑦) ⊆ (card‘∪ 𝐴)
↔ 𝑦 ⊆
(card‘∪ 𝐴))) |
30 | 29 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → ((card‘𝑦) ⊆ (card‘∪ 𝐴)
↔ 𝑦 ⊆
(card‘∪ 𝐴))) |
31 | 28, 30 | sylibd 238 |
. . . . . . . . . . . . . . 15
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦 ∈
𝐴 → 𝑦 ⊆ (card‘∪ 𝐴))) |
32 | | ssel 3914 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ (card‘∪ 𝐴)
→ ((card‘∪ 𝐴) ∈ 𝑦 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))) |
33 | 31, 32 | syl6 35 |
. . . . . . . . . . . . . 14
⊢
(((card‘𝑦) =
𝑦 ∧ ∪ 𝐴
∈ On) → (𝑦 ∈
𝐴 → ((card‘∪ 𝐴)
∈ 𝑦 →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴)))) |
34 | 33 | ex 413 |
. . . . . . . . . . . . 13
⊢
((card‘𝑦) =
𝑦 → (∪ 𝐴
∈ On → (𝑦 ∈
𝐴 → ((card‘∪ 𝐴)
∈ 𝑦 →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴))))) |
35 | 34 | com3r 87 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → ((card‘𝑦) = 𝑦 → (∪ 𝐴 ∈ On →
((card‘∪ 𝐴) ∈ 𝑦 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))))) |
36 | 5, 35 | syld 47 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
((card‘∪ 𝐴) ∈ 𝑦 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))))) |
37 | 36 | com4r 94 |
. . . . . . . . . 10
⊢
((card‘∪ 𝐴) ∈ 𝑦 → (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴))))) |
38 | 37 | imp 407 |
. . . . . . . . 9
⊢
(((card‘∪ 𝐴) ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴)))) |
39 | 38 | exlimiv 1933 |
. . . . . . . 8
⊢
(∃𝑦((card‘∪
𝐴) ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴)))) |
40 | 16, 39 | sylbi 216 |
. . . . . . 7
⊢
((card‘∪ 𝐴) ∈ ∪ 𝐴 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (∪ 𝐴 ∈ On →
(card‘∪ 𝐴) ∈ (card‘∪ 𝐴)))) |
41 | 40 | com13 88 |
. . . . . 6
⊢ (∪ 𝐴
∈ On → (∀𝑥
∈ 𝐴 (card‘𝑥) = 𝑥 → ((card‘∪ 𝐴)
∈ ∪ 𝐴 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴)))) |
42 | 41 | imp 407 |
. . . . 5
⊢ ((∪ 𝐴
∈ On ∧ ∀𝑥
∈ 𝐴 (card‘𝑥) = 𝑥) → ((card‘∪ 𝐴)
∈ ∪ 𝐴 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))) |
43 | 11, 42 | sylancom 588 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → ((card‘∪ 𝐴)
∈ ∪ 𝐴 → (card‘∪ 𝐴)
∈ (card‘∪ 𝐴))) |
44 | 15, 43 | mtoi 198 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → ¬ (card‘∪ 𝐴)
∈ ∪ 𝐴) |
45 | 14 | onordi 6371 |
. . . 4
⊢ Ord
(card‘∪ 𝐴) |
46 | | eloni 6276 |
. . . . 5
⊢ (∪ 𝐴
∈ On → Ord ∪ 𝐴) |
47 | 11, 46 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → Ord ∪
𝐴) |
48 | | ordtri4 6303 |
. . . 4
⊢ ((Ord
(card‘∪ 𝐴) ∧ Ord ∪
𝐴) →
((card‘∪ 𝐴) = ∪ 𝐴 ↔ ((card‘∪ 𝐴)
⊆ ∪ 𝐴 ∧ ¬ (card‘∪ 𝐴)
∈ ∪ 𝐴))) |
49 | 45, 47, 48 | sylancr 587 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → ((card‘∪ 𝐴) =
∪ 𝐴 ↔ ((card‘∪ 𝐴)
⊆ ∪ 𝐴 ∧ ¬ (card‘∪ 𝐴)
∈ ∪ 𝐴))) |
50 | 13, 44, 49 | mpbir2and 710 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥) → (card‘∪ 𝐴) =
∪ 𝐴) |
51 | 50 | ex 413 |
1
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 (card‘𝑥) = 𝑥 → (card‘∪ 𝐴) =
∪ 𝐴)) |