Proof of Theorem xrinfmsslem
Step | Hyp | Ref
| Expression |
1 | | raleq 3342 |
. . . . . 6
⊢ (𝐴 = ∅ → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥)) |
2 | | rexeq 3343 |
. . . . . . . 8
⊢ (𝐴 = ∅ → (∃𝑧 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
3 | 2 | imbi2d 341 |
. . . . . . 7
⊢ (𝐴 = ∅ → ((𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) |
4 | 3 | ralbidv 3112 |
. . . . . 6
⊢ (𝐴 = ∅ → (∀𝑦 ∈ ℝ*
(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) |
5 | 1, 4 | anbi12d 631 |
. . . . 5
⊢ (𝐴 = ∅ →
((∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))) |
6 | 5 | rexbidv 3226 |
. . . 4
⊢ (𝐴 = ∅ → (∃𝑥 ∈ ℝ*
(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))) |
7 | | infm3 11934 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
8 | | rexr 11021 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
9 | 8 | anim1i 615 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧
(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → (𝑥 ∈ ℝ* ∧
(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
10 | 9 | reximi2 3175 |
. . . . . . . 8
⊢
(∃𝑥 ∈
ℝ (∀𝑦 ∈
𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
11 | 7, 10 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
12 | | elxr 12852 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
↔ (𝑦 ∈ ℝ
∨ 𝑦 = +∞ ∨
𝑦 =
-∞)) |
13 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
∧ (𝑦 ∈ ℝ
→ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
14 | | ssel 3914 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ⊆ ℝ → (𝑧 ∈ 𝐴 → 𝑧 ∈ ℝ)) |
15 | | ltpnf 12856 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ ℝ → 𝑧 < +∞) |
16 | 14, 15 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ⊆ ℝ → (𝑧 ∈ 𝐴 → 𝑧 < +∞)) |
17 | 16 | ancld 551 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ⊆ ℝ → (𝑧 ∈ 𝐴 → (𝑧 ∈ 𝐴 ∧ 𝑧 < +∞))) |
18 | 17 | eximdv 1920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ⊆ ℝ →
(∃𝑧 𝑧 ∈ 𝐴 → ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 < +∞))) |
19 | | n0 4280 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝐴) |
20 | | df-rex 3070 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑧 ∈
𝐴 𝑧 < +∞ ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 < +∞)) |
21 | 18, 19, 20 | 3imtr4g 296 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ →
∃𝑧 ∈ 𝐴 𝑧 < +∞)) |
22 | 21 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) →
∃𝑧 ∈ 𝐴 𝑧 < +∞) |
23 | 22 | a1d 25 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (𝑥 < +∞ →
∃𝑧 ∈ 𝐴 𝑧 < +∞)) |
24 | 23 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
∧ 𝑦 = +∞) →
(𝑥 < +∞ →
∃𝑧 ∈ 𝐴 𝑧 < +∞)) |
25 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = +∞ → (𝑥 < 𝑦 ↔ 𝑥 < +∞)) |
26 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = +∞ → (𝑧 < 𝑦 ↔ 𝑧 < +∞)) |
27 | 26 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = +∞ → (∃𝑧 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ 𝐴 𝑧 < +∞)) |
28 | 25, 27 | imbi12d 345 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = +∞ → ((𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧 ∈ 𝐴 𝑧 < +∞))) |
29 | 28 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
∧ 𝑦 = +∞) →
((𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧 ∈ 𝐴 𝑧 < +∞))) |
30 | 24, 29 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
∧ 𝑦 = +∞) →
(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
31 | 30 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
→ (𝑦 = +∞ →
(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
∧ (𝑦 ∈ ℝ
→ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
33 | | nltmnf 12865 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ*
→ ¬ 𝑥 <
-∞) |
34 | 33 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 = -∞) →
¬ 𝑥 <
-∞) |
35 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = -∞ → (𝑥 < 𝑦 ↔ 𝑥 < -∞)) |
36 | 35 | notbid 318 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞)) |
37 | 36 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 = -∞) →
(¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞)) |
38 | 34, 37 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 = -∞) →
¬ 𝑥 < 𝑦) |
39 | 38 | pm2.21d 121 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 = -∞) →
(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
40 | 39 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ*
→ (𝑦 = -∞ →
(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
41 | 40 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
∧ (𝑦 ∈ ℝ
→ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
42 | 13, 32, 41 | 3jaod 1427 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
∧ (𝑦 ∈ ℝ
→ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
43 | 12, 42 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
∧ (𝑦 ∈ ℝ
→ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
44 | 43 | ex 413 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
→ ((𝑦 ∈ ℝ
→ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
45 | 44 | ralimdv2 3107 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
→ (∀𝑦 ∈
ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
46 | 45 | anim2d 612 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*)
→ ((∀𝑦 ∈
𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
47 | 46 | reximdva 3203 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) →
(∃𝑥 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
48 | 47 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
49 | 11, 48 | mpd 15 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
50 | 49 | 3expa 1117 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
51 | | ralnex 3167 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
ℝ ¬ ∀𝑦
∈ 𝐴 𝑥 ≤ 𝑦 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
52 | | rexnal 3169 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
𝐴 ¬ 𝑥 ≤ 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
53 | | ssel2 3916 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
54 | | letric 11075 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
55 | 54 | ancoms 459 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
56 | 55 | ord 861 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬
𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑥)) |
57 | 53, 56 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑥)) |
58 | 57 | an32s 649 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑥)) |
59 | 58 | reximdva 3203 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) →
(∃𝑦 ∈ 𝐴 ¬ 𝑥 ≤ 𝑦 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
60 | 52, 59 | syl5bir 242 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬
∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
61 | 60 | ralimdva 3108 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ ℝ
¬ ∀𝑦 ∈
𝐴 𝑥 ≤ 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
62 | 61 | imp 407 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧
∀𝑥 ∈ ℝ
¬ ∀𝑦 ∈
𝐴 𝑥 ≤ 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
63 | 51, 62 | sylan2br 595 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ ¬
∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
64 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 ≤ 𝑥 ↔ 𝑧 ≤ 𝑥)) |
65 | 64 | cbvrexvw 3384 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) |
66 | 65 | ralbii 3092 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) |
67 | 63, 66 | sylib 217 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ ¬
∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∀𝑥 ∈ ℝ ∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) |
68 | | mnfxr 11032 |
. . . . . . . 8
⊢ -∞
∈ ℝ* |
69 | | ssel 3914 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
70 | | rexr 11021 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
71 | | nltmnf 12865 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ ¬ 𝑦 <
-∞) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → ¬
𝑦 <
-∞) |
73 | 69, 72 | syl6 35 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → ¬ 𝑦 < -∞)) |
74 | 73 | ralrimiv 3102 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ →
∀𝑦 ∈ 𝐴 ¬ 𝑦 < -∞) |
75 | 74 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) → ∀𝑦 ∈ 𝐴 ¬ 𝑦 < -∞) |
76 | | peano2rem 11288 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) ∈
ℝ) |
77 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = (𝑦 − 1) → (𝑧 ≤ 𝑥 ↔ 𝑧 ≤ (𝑦 − 1))) |
78 | 77 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = (𝑦 − 1) → (∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ↔ ∃𝑧 ∈ 𝐴 𝑧 ≤ (𝑦 − 1))) |
79 | 78 | rspcva 3559 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 − 1) ∈ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) → ∃𝑧 ∈ 𝐴 𝑧 ≤ (𝑦 − 1)) |
80 | 79 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 − 1) ∈ ℝ ∧
(∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ)) → ∃𝑧 ∈ 𝐴 𝑧 ≤ (𝑦 − 1)) |
81 | 80 | ancoms 459 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((∀𝑥 ∈
ℝ ∃𝑧 ∈
𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 − 1) ∈ ℝ) →
∃𝑧 ∈ 𝐴 𝑧 ≤ (𝑦 − 1)) |
82 | 76, 81 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢
(((∀𝑥 ∈
ℝ ∃𝑧 ∈
𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ 𝐴 𝑧 ≤ (𝑦 − 1)) |
83 | | ssel2 3916 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
84 | | ltm1 11817 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦) |
85 | 84 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 − 1) < 𝑦) |
86 | 76 | ancri 550 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℝ → ((𝑦 − 1) ∈ ℝ ∧
𝑦 ∈
ℝ)) |
87 | | lelttr 11065 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑧 ∈ ℝ ∧ (𝑦 − 1) ∈ ℝ ∧
𝑦 ∈ ℝ) →
((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦)) |
88 | 87 | 3expb 1119 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑧 ∈ ℝ ∧ ((𝑦 − 1) ∈ ℝ ∧
𝑦 ∈ ℝ)) →
((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦)) |
89 | 86, 88 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦)) |
90 | 85, 89 | mpan2d 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦)) |
91 | 83, 90 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴) ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦)) |
92 | 91 | an32s 649 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ 𝐴) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦)) |
93 | 92 | reximdva 3203 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) →
(∃𝑧 ∈ 𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
94 | 93 | adantll 711 |
. . . . . . . . . . . . . . . . . 18
⊢
(((∀𝑥 ∈
ℝ ∃𝑧 ∈
𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧 ∈ 𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
95 | 82, 94 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢
(((∀𝑥 ∈
ℝ ∃𝑧 ∈
𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) |
96 | 95 | exp31 420 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
ℝ ∃𝑧 ∈
𝐴 𝑧 ≤ 𝑥 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
97 | 96 | a1dd 50 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
ℝ ∃𝑧 ∈
𝐴 𝑧 ≤ 𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → (𝑦 ∈ ℝ → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
98 | 97 | com4r 94 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ →
(∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
99 | | 0re 10977 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
100 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 0 → (𝑧 ≤ 𝑥 ↔ 𝑧 ≤ 0)) |
101 | 100 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 0 → (∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ↔ ∃𝑧 ∈ 𝐴 𝑧 ≤ 0)) |
102 | 101 | rspcva 3559 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) → ∃𝑧 ∈ 𝐴 𝑧 ≤ 0) |
103 | 99, 102 | mpan 687 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
ℝ ∃𝑧 ∈
𝐴 𝑧 ≤ 𝑥 → ∃𝑧 ∈ 𝐴 𝑧 ≤ 0) |
104 | 83, 15 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴) → 𝑧 < +∞) |
105 | 104 | a1d 25 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴) → (𝑧 ≤ 0 → 𝑧 < +∞)) |
106 | 105 | reximdva 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ⊆ ℝ →
(∃𝑧 ∈ 𝐴 𝑧 ≤ 0 → ∃𝑧 ∈ 𝐴 𝑧 < +∞)) |
107 | 103, 106 | mpan9 507 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑥 ∈
ℝ ∃𝑧 ∈
𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ) → ∃𝑧 ∈ 𝐴 𝑧 < +∞) |
108 | 107, 27 | syl5ibr 245 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = +∞ →
((∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ) → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
109 | 108 | a1dd 50 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = +∞ →
((∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 ∧ 𝐴 ⊆ ℝ) → (-∞ <
𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
110 | 109 | expd 416 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = +∞ →
(∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
111 | | xrltnr 12855 |
. . . . . . . . . . . . . . . . . 18
⊢ (-∞
∈ ℝ* → ¬ -∞ <
-∞) |
112 | 68, 111 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
-∞ < -∞ |
113 | | breq2 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = -∞ → (-∞
< 𝑦 ↔ -∞ <
-∞)) |
114 | 112, 113 | mtbiri 327 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = -∞ → ¬
-∞ < 𝑦) |
115 | 114 | pm2.21d 121 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = -∞ → (-∞
< 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
116 | 115 | 2a1d 26 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = -∞ →
(∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
117 | 98, 110, 116 | 3jaoi 1426 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) →
(∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
118 | 12, 117 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑧 ∈
𝐴 𝑧 ≤ 𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
119 | 118 | com13 88 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ ℝ →
(∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥 → (𝑦 ∈ ℝ* → (-∞
< 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
120 | 119 | imp 407 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) → (𝑦 ∈ ℝ* → (-∞
< 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
121 | 120 | ralrimiv 3102 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) → ∀𝑦 ∈ ℝ* (-∞ <
𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
122 | 75, 121 | jca 512 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) → (∀𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ*
(-∞ < 𝑦 →
∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
123 | | breq2 5078 |
. . . . . . . . . . . 12
⊢ (𝑥 = -∞ → (𝑦 < 𝑥 ↔ 𝑦 < -∞)) |
124 | 123 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑥 = -∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -∞)) |
125 | 124 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑥 = -∞ →
(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦 < -∞)) |
126 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦)) |
127 | 126 | imbi1d 342 |
. . . . . . . . . . 11
⊢ (𝑥 = -∞ → ((𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ (-∞ < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
128 | 127 | ralbidv 3112 |
. . . . . . . . . 10
⊢ (𝑥 = -∞ →
(∀𝑦 ∈
ℝ* (𝑥 <
𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (-∞ <
𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
129 | 125, 128 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑥 = -∞ →
((∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ*
(-∞ < 𝑦 →
∃𝑧 ∈ 𝐴 𝑧 < 𝑦)))) |
130 | 129 | rspcev 3561 |
. . . . . . . 8
⊢
((-∞ ∈ ℝ* ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ*
(-∞ < 𝑦 →
∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
131 | 68, 122, 130 | sylancr 587 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑧 ∈ 𝐴 𝑧 ≤ 𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
132 | 67, 131 | syldan 591 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ ¬
∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
133 | 132 | adantlr 712 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬
∃𝑥 ∈ ℝ
∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
134 | 50, 133 | pm2.61dan 810 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
135 | | pnfxr 11029 |
. . . . . 6
⊢ +∞
∈ ℝ* |
136 | | ral0 4443 |
. . . . . . 7
⊢
∀𝑦 ∈
∅ ¬ 𝑦 <
+∞ |
137 | | pnfnlt 12864 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ*
→ ¬ +∞ < 𝑦) |
138 | 137 | pm2.21d 121 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ*
→ (+∞ < 𝑦
→ ∃𝑧 ∈
∅ 𝑧 < 𝑦)) |
139 | 138 | rgen 3074 |
. . . . . . 7
⊢
∀𝑦 ∈
ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) |
140 | 136, 139 | pm3.2i 471 |
. . . . . 6
⊢
(∀𝑦 ∈
∅ ¬ 𝑦 <
+∞ ∧ ∀𝑦
∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
141 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑥 = +∞ → (𝑦 < 𝑥 ↔ 𝑦 < +∞)) |
142 | 141 | notbid 318 |
. . . . . . . . 9
⊢ (𝑥 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < +∞)) |
143 | 142 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑥 = +∞ →
(∀𝑦 ∈ ∅
¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 <
+∞)) |
144 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦)) |
145 | 144 | imbi1d 342 |
. . . . . . . . 9
⊢ (𝑥 = +∞ → ((𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) |
146 | 145 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑥 = +∞ →
(∀𝑦 ∈
ℝ* (𝑥 <
𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (+∞ <
𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) |
147 | 143, 146 | anbi12d 631 |
. . . . . . 7
⊢ (𝑥 = +∞ →
((∀𝑦 ∈ ∅
¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ*
(𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ*
(+∞ < 𝑦 →
∃𝑧 ∈ ∅
𝑧 < 𝑦)))) |
148 | 147 | rspcev 3561 |
. . . . . 6
⊢
((+∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ*
(+∞ < 𝑦 →
∃𝑧 ∈ ∅
𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) |
149 | 135, 140,
148 | mp2an 689 |
. . . . 5
⊢
∃𝑥 ∈
ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) |
150 | 149 | a1i 11 |
. . . 4
⊢ (𝐴 ⊆ ℝ →
∃𝑥 ∈
ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) |
151 | 6, 134, 150 | pm2.61ne 3030 |
. . 3
⊢ (𝐴 ⊆ ℝ →
∃𝑥 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
152 | 151 | adantl 482 |
. 2
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 ⊆ ℝ)
→ ∃𝑥 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
153 | | ssel 3914 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ*
→ (𝑦 ∈ 𝐴 → 𝑦 ∈
ℝ*)) |
154 | 153, 71 | syl6 35 |
. . . . 5
⊢ (𝐴 ⊆ ℝ*
→ (𝑦 ∈ 𝐴 → ¬ 𝑦 < -∞)) |
155 | 154 | ralrimiv 3102 |
. . . 4
⊢ (𝐴 ⊆ ℝ*
→ ∀𝑦 ∈
𝐴 ¬ 𝑦 < -∞) |
156 | | breq1 5077 |
. . . . . . 7
⊢ (𝑧 = -∞ → (𝑧 < 𝑦 ↔ -∞ < 𝑦)) |
157 | 156 | rspcev 3561 |
. . . . . 6
⊢
((-∞ ∈ 𝐴
∧ -∞ < 𝑦)
→ ∃𝑧 ∈
𝐴 𝑧 < 𝑦) |
158 | 157 | ex 413 |
. . . . 5
⊢ (-∞
∈ 𝐴 → (-∞
< 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
159 | 158 | ralrimivw 3104 |
. . . 4
⊢ (-∞
∈ 𝐴 →
∀𝑦 ∈
ℝ* (-∞ < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) |
160 | 155, 159 | anim12i 613 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ -∞ ∈ 𝐴)
→ (∀𝑦 ∈
𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ*
(-∞ < 𝑦 →
∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
161 | 68, 160, 130 | sylancr 587 |
. 2
⊢ ((𝐴 ⊆ ℝ*
∧ -∞ ∈ 𝐴)
→ ∃𝑥 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
162 | 152, 161 | jaodan 955 |
1
⊢ ((𝐴 ⊆ ℝ*
∧ (𝐴 ⊆ ℝ
∨ -∞ ∈ 𝐴))
→ ∃𝑥 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |