MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmsslem Structured version   Visualization version   GIF version

Theorem xrinfmsslem 13286
Description: Lemma for xrinfmss 13288. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrinfmsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmsslem
StepHypRef Expression
1 raleq 3322 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥))
2 rexeq 3321 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
32imbi2d 340 . . . . . . 7 (𝐴 = ∅ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
43ralbidv 3177 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
51, 4anbi12d 631 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
65rexbidv 3178 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
7 infm3 12172 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
8 rexr 11259 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 615 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
109reximi2 3079 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
12 elxr 13095 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 485 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
14 ssel 3975 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
15 ltpnf 13099 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → 𝑧 < +∞)
1614, 15syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 < +∞))
1716ancld 551 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴𝑧 < +∞)))
1817eximdv 1920 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 < +∞)))
19 n0 4346 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
20 df-rex 3071 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 𝑧 < +∞ ↔ ∃𝑧(𝑧𝐴𝑧 < +∞))
2118, 19, 203imtr4g 295 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 𝑧 < +∞))
2221imp 407 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 𝑧 < +∞)
2322a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
2423ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
25 breq2 5152 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (𝑥 < 𝑦𝑥 < +∞))
26 breq2 5152 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑧 < 𝑦𝑧 < +∞))
2726rexbidv 3178 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < +∞))
2825, 27imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = +∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
2928adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
3024, 29mpbird 256 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3130ex 413 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3231adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
33 nltmnf 13108 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
3433adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < -∞)
35 breq2 5152 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
3635notbid 317 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3736adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3834, 37mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < 𝑦)
3938pm2.21d 121 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
4039ex 413 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4140ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4213, 32, 413jaod 1428 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4312, 42biimtrid 241 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4443ex 413 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4544ralimdv2 3163 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4645anim2d 612 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4746reximdva 3168 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
48473adant3 1132 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
50493expa 1118 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
51 ralnex 3072 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
52 rexnal 3100 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∀𝑦𝐴 𝑥𝑦)
53 ssel2 3977 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 11313 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5554ancoms 459 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5655ord 862 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5753, 56sylan 580 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5857an32s 650 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑥𝑦𝑦𝑥))
5958reximdva 3168 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6052, 59biimtrrid 242 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6160ralimdva 3167 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
6261imp 407 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
6351, 62sylan2br 595 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
64 breq1 5151 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
6564cbvrexvw 3235 . . . . . . . . 9 (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑧𝐴 𝑧𝑥)
6665ralbii 3093 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
6763, 66sylib 217 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
68 mnfxr 11270 . . . . . . . 8 -∞ ∈ ℝ*
69 ssel 3975 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
70 rexr 11259 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
71 nltmnf 13108 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
7270, 71syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ 𝑦 < -∞)
7369, 72syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ 𝑦 < -∞))
7473ralrimiv 3145 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ 𝑦 < -∞)
7574adantr 481 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦𝐴 ¬ 𝑦 < -∞)
76 peano2rem 11526 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
77 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 − 1) → (𝑧𝑥𝑧 ≤ (𝑦 − 1)))
7877rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 − 1) → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1)))
7978rspcva 3610 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8079adantrr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 − 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ)) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8180ancoms 459 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ (𝑦 − 1) ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8276, 81sylan2 593 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
83 ssel2 3977 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
84 ltm1 12055 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
8584adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 − 1) < 𝑦)
8676ancri 550 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ))
87 lelttr 11303 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℝ ∧ (𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
88873expb 1120 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
8986, 88sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
9085, 89mpan2d 692 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9183, 90sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9291an32s 650 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9392reximdva 3168 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9493adantll 712 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9582, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦)
9695exp31 420 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
99 0re 11215 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
100 breq2 5152 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑧𝑥𝑧 ≤ 0))
101100rexbidv 3178 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ 0))
102101rspcva 3610 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ 0)
10399, 102mpan 688 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → ∃𝑧𝐴 𝑧 ≤ 0)
10483, 15syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 < +∞)
105104a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (𝑧 ≤ 0 → 𝑧 < +∞))
106105reximdva 3168 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 𝑧 ≤ 0 → ∃𝑧𝐴 𝑧 < +∞))
107103, 106mpan9 507 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < +∞)
108107, 27imbitrrid 245 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦))
109108a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
110109expd 416 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
111 xrltnr 13098 . . . . . . . . . . . . . . . . . 18 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
11268, 111ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ -∞ < -∞
113 breq2 5152 . . . . . . . . . . . . . . . . 17 (𝑦 = -∞ → (-∞ < 𝑦 ↔ -∞ < -∞))
114112, 113mtbiri 326 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ¬ -∞ < 𝑦)
115114pm2.21d 121 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
1161152a1d 26 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11798, 110, 1163jaoi 1427 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11812, 117sylbi 216 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
120119imp 407 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
121120ralrimiv 3145 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
12275, 121jca 512 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
123 breq2 5152 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
124123notbid 317 . . . . . . . . . . 11 (𝑥 = -∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -∞))
125124ralbidv 3177 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < -∞))
126 breq1 5151 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
127126imbi1d 341 . . . . . . . . . . 11 (𝑥 = -∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
128127ralbidv 3177 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
129125, 128anbi12d 631 . . . . . . . . 9 (𝑥 = -∞ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
130129rspcev 3612 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13168, 122, 130sylancr 587 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13267, 131syldan 591 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
133132adantlr 713 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13450, 133pm2.61dan 811 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
135 pnfxr 11267 . . . . . 6 +∞ ∈ ℝ*
136 ral0 4512 . . . . . . 7 𝑦 ∈ ∅ ¬ 𝑦 < +∞
137 pnfnlt 13107 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
138137pm2.21d 121 . . . . . . . 8 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
139138rgen 3063 . . . . . . 7 𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
140136, 139pm3.2i 471 . . . . . 6 (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
141 breq2 5152 . . . . . . . . . 10 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
142141notbid 317 . . . . . . . . 9 (𝑥 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < +∞))
143142ralbidv 3177 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < +∞))
144 breq1 5151 . . . . . . . . . 10 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
145144imbi1d 341 . . . . . . . . 9 (𝑥 = +∞ → ((𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
146145ralbidv 3177 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
147143, 146anbi12d 631 . . . . . . 7 (𝑥 = +∞ → ((∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
148147rspcev 3612 . . . . . 6 ((+∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
149135, 140, 148mp2an 690 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
1516, 134, 150pm2.61ne 3027 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
152151adantl 482 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
153 ssel 3975 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 71syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ 𝑦 < -∞))
155154ralrimiv 3145 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ 𝑦 < -∞)
156 breq1 5151 . . . . . . 7 (𝑧 = -∞ → (𝑧 < 𝑦 ↔ -∞ < 𝑦))
157156rspcev 3612 . . . . . 6 ((-∞ ∈ 𝐴 ∧ -∞ < 𝑦) → ∃𝑧𝐴 𝑧 < 𝑦)
158157ex 413 . . . . 5 (-∞ ∈ 𝐴 → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
159158ralrimivw 3150 . . . 4 (-∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
160155, 159anim12i 613 . . 3 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
16168, 160, 130sylancr 587 . 2 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
162152, 161jaodan 956 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3948  c0 4322   class class class wbr 5148  (class class class)co 7408  cr 11108  0cc0 11109  1c1 11110  +∞cpnf 11244  -∞cmnf 11245  *cxr 11246   < clt 11247  cle 11248  cmin 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446
This theorem is referenced by:  xrinfmss  13288
  Copyright terms: Public domain W3C validator