MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmsslem Structured version   Visualization version   GIF version

Theorem xrinfmsslem 13329
Description: Lemma for xrinfmss 13331. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrinfmsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmsslem
StepHypRef Expression
1 raleq 3306 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥))
2 rexeq 3305 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
32imbi2d 340 . . . . . . 7 (𝐴 = ∅ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
43ralbidv 3164 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
51, 4anbi12d 632 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
65rexbidv 3165 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
7 infm3 12206 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
8 rexr 11286 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 615 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
109reximi2 3070 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
12 elxr 13137 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
14 ssel 3957 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
15 ltpnf 13141 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → 𝑧 < +∞)
1614, 15syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 < +∞))
1716ancld 550 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴𝑧 < +∞)))
1817eximdv 1917 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 < +∞)))
19 n0 4333 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
20 df-rex 3062 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 𝑧 < +∞ ↔ ∃𝑧(𝑧𝐴𝑧 < +∞))
2118, 19, 203imtr4g 296 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 𝑧 < +∞))
2221imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 𝑧 < +∞)
2322a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
2423ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
25 breq2 5128 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (𝑥 < 𝑦𝑥 < +∞))
26 breq2 5128 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑧 < 𝑦𝑧 < +∞))
2726rexbidv 3165 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < +∞))
2825, 27imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = +∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
2928adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
3024, 29mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3130ex 412 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3231adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
33 nltmnf 13150 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
3433adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < -∞)
35 breq2 5128 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
3635notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3736adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3834, 37mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < 𝑦)
3938pm2.21d 121 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
4039ex 412 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4140ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4213, 32, 413jaod 1431 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4312, 42biimtrid 242 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4443ex 412 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4544ralimdv2 3150 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4645anim2d 612 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4746reximdva 3154 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
48473adant3 1132 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
50493expa 1118 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
51 ralnex 3063 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
52 rexnal 3090 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∀𝑦𝐴 𝑥𝑦)
53 ssel2 3958 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 11340 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5554ancoms 458 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5655ord 864 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5753, 56sylan 580 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5857an32s 652 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑥𝑦𝑦𝑥))
5958reximdva 3154 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6052, 59biimtrrid 243 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6160ralimdva 3153 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
6261imp 406 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
6351, 62sylan2br 595 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
64 breq1 5127 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
6564cbvrexvw 3225 . . . . . . . . 9 (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑧𝐴 𝑧𝑥)
6665ralbii 3083 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
6763, 66sylib 218 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
68 mnfxr 11297 . . . . . . . 8 -∞ ∈ ℝ*
69 ssel 3957 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
70 rexr 11286 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
71 nltmnf 13150 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
7270, 71syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ 𝑦 < -∞)
7369, 72syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ 𝑦 < -∞))
7473ralrimiv 3132 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ 𝑦 < -∞)
7574adantr 480 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦𝐴 ¬ 𝑦 < -∞)
76 peano2rem 11555 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
77 breq2 5128 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 − 1) → (𝑧𝑥𝑧 ≤ (𝑦 − 1)))
7877rexbidv 3165 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 − 1) → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1)))
7978rspcva 3604 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8079adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 − 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ)) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8180ancoms 458 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ (𝑦 − 1) ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8276, 81sylan2 593 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
83 ssel2 3958 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
84 ltm1 12088 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
8584adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 − 1) < 𝑦)
8676ancri 549 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ))
87 lelttr 11330 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℝ ∧ (𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
88873expb 1120 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
8986, 88sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
9085, 89mpan2d 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9183, 90sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9291an32s 652 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9392reximdva 3154 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9493adantll 714 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9582, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦)
9695exp31 419 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
99 0re 11242 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
100 breq2 5128 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑧𝑥𝑧 ≤ 0))
101100rexbidv 3165 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ 0))
102101rspcva 3604 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ 0)
10399, 102mpan 690 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → ∃𝑧𝐴 𝑧 ≤ 0)
10483, 15syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 < +∞)
105104a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (𝑧 ≤ 0 → 𝑧 < +∞))
106105reximdva 3154 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 𝑧 ≤ 0 → ∃𝑧𝐴 𝑧 < +∞))
107103, 106mpan9 506 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < +∞)
108107, 27imbitrrid 246 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦))
109108a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
110109expd 415 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
111 xrltnr 13140 . . . . . . . . . . . . . . . . . 18 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
11268, 111ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ -∞ < -∞
113 breq2 5128 . . . . . . . . . . . . . . . . 17 (𝑦 = -∞ → (-∞ < 𝑦 ↔ -∞ < -∞))
114112, 113mtbiri 327 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ¬ -∞ < 𝑦)
115114pm2.21d 121 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
1161152a1d 26 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11798, 110, 1163jaoi 1430 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11812, 117sylbi 217 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
120119imp 406 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
121120ralrimiv 3132 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
12275, 121jca 511 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
123 breq2 5128 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
124123notbid 318 . . . . . . . . . . 11 (𝑥 = -∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -∞))
125124ralbidv 3164 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < -∞))
126 breq1 5127 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
127126imbi1d 341 . . . . . . . . . . 11 (𝑥 = -∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
128127ralbidv 3164 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
129125, 128anbi12d 632 . . . . . . . . 9 (𝑥 = -∞ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
130129rspcev 3606 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13168, 122, 130sylancr 587 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13267, 131syldan 591 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
133132adantlr 715 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13450, 133pm2.61dan 812 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
135 pnfxr 11294 . . . . . 6 +∞ ∈ ℝ*
136 ral0 4493 . . . . . . 7 𝑦 ∈ ∅ ¬ 𝑦 < +∞
137 pnfnlt 13149 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
138137pm2.21d 121 . . . . . . . 8 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
139138rgen 3054 . . . . . . 7 𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
140136, 139pm3.2i 470 . . . . . 6 (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
141 breq2 5128 . . . . . . . . . 10 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
142141notbid 318 . . . . . . . . 9 (𝑥 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < +∞))
143142ralbidv 3164 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < +∞))
144 breq1 5127 . . . . . . . . . 10 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
145144imbi1d 341 . . . . . . . . 9 (𝑥 = +∞ → ((𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
146145ralbidv 3164 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
147143, 146anbi12d 632 . . . . . . 7 (𝑥 = +∞ → ((∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
148147rspcev 3606 . . . . . 6 ((+∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
149135, 140, 148mp2an 692 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
1516, 134, 150pm2.61ne 3018 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
152151adantl 481 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
153 ssel 3957 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 71syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ 𝑦 < -∞))
155154ralrimiv 3132 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ 𝑦 < -∞)
156 breq1 5127 . . . . . . 7 (𝑧 = -∞ → (𝑧 < 𝑦 ↔ -∞ < 𝑦))
157156rspcev 3606 . . . . . 6 ((-∞ ∈ 𝐴 ∧ -∞ < 𝑦) → ∃𝑧𝐴 𝑧 < 𝑦)
158157ex 412 . . . . 5 (-∞ ∈ 𝐴 → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
159158ralrimivw 3137 . . . 4 (-∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
160155, 159anim12i 613 . . 3 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
16168, 160, 130sylancr 587 . 2 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
162152, 161jaodan 959 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  c0 4313   class class class wbr 5124  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135  +∞cpnf 11271  -∞cmnf 11272  *cxr 11273   < clt 11274  cle 11275  cmin 11471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474
This theorem is referenced by:  xrinfmss  13331
  Copyright terms: Public domain W3C validator