MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmsslem Structured version   Visualization version   GIF version

Theorem xrinfmsslem 12755
Description: Lemma for xrinfmss 12757. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrinfmsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmsslem
StepHypRef Expression
1 raleq 3323 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥))
2 rexeq 3324 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
32imbi2d 344 . . . . . . 7 (𝐴 = ∅ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
43ralbidv 3126 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
51, 4anbi12d 633 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
65rexbidv 3221 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
7 infm3 11649 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
8 rexr 10738 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 617 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
109reximi2 3172 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
12 elxr 12565 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 488 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
14 ssel 3887 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
15 ltpnf 12569 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → 𝑧 < +∞)
1614, 15syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 < +∞))
1716ancld 554 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴𝑧 < +∞)))
1817eximdv 1918 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 < +∞)))
19 n0 4247 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
20 df-rex 3076 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 𝑧 < +∞ ↔ ∃𝑧(𝑧𝐴𝑧 < +∞))
2118, 19, 203imtr4g 299 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 𝑧 < +∞))
2221imp 410 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 𝑧 < +∞)
2322a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
2423ad2antrr 725 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
25 breq2 5040 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (𝑥 < 𝑦𝑥 < +∞))
26 breq2 5040 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑧 < 𝑦𝑧 < +∞))
2726rexbidv 3221 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < +∞))
2825, 27imbi12d 348 . . . . . . . . . . . . . . . . . 18 (𝑦 = +∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
2928adantl 485 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
3024, 29mpbird 260 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3130ex 416 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3231adantr 484 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
33 nltmnf 12578 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
3433adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < -∞)
35 breq2 5040 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
3635notbid 321 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3736adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3834, 37mpbird 260 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < 𝑦)
3938pm2.21d 121 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
4039ex 416 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4140ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4213, 32, 413jaod 1425 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4312, 42syl5bi 245 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4443ex 416 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4544ralimdv2 3107 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4645anim2d 614 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4746reximdva 3198 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
48473adant3 1129 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
50493expa 1115 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
51 ralnex 3163 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
52 rexnal 3165 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∀𝑦𝐴 𝑥𝑦)
53 ssel2 3889 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 10791 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5554ancoms 462 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5655ord 861 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5753, 56sylan 583 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5857an32s 651 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑥𝑦𝑦𝑥))
5958reximdva 3198 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6052, 59syl5bir 246 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6160ralimdva 3108 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
6261imp 410 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
6351, 62sylan2br 597 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
64 breq1 5039 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
6564cbvrexvw 3362 . . . . . . . . 9 (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑧𝐴 𝑧𝑥)
6665ralbii 3097 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
6763, 66sylib 221 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
68 mnfxr 10749 . . . . . . . 8 -∞ ∈ ℝ*
69 ssel 3887 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
70 rexr 10738 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
71 nltmnf 12578 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
7270, 71syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ 𝑦 < -∞)
7369, 72syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ 𝑦 < -∞))
7473ralrimiv 3112 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ 𝑦 < -∞)
7574adantr 484 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦𝐴 ¬ 𝑦 < -∞)
76 peano2rem 11004 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
77 breq2 5040 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 − 1) → (𝑧𝑥𝑧 ≤ (𝑦 − 1)))
7877rexbidv 3221 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 − 1) → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1)))
7978rspcva 3541 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8079adantrr 716 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 − 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ)) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8180ancoms 462 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ (𝑦 − 1) ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8276, 81sylan2 595 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
83 ssel2 3889 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
84 ltm1 11533 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
8584adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 − 1) < 𝑦)
8676ancri 553 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ))
87 lelttr 10782 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℝ ∧ (𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
88873expb 1117 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
8986, 88sylan2 595 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
9085, 89mpan2d 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9183, 90sylan 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9291an32s 651 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9392reximdva 3198 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9493adantll 713 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9582, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦)
9695exp31 423 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
99 0re 10694 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
100 breq2 5040 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑧𝑥𝑧 ≤ 0))
101100rexbidv 3221 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ 0))
102101rspcva 3541 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ 0)
10399, 102mpan 689 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → ∃𝑧𝐴 𝑧 ≤ 0)
10483, 15syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 < +∞)
105104a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (𝑧 ≤ 0 → 𝑧 < +∞))
106105reximdva 3198 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 𝑧 ≤ 0 → ∃𝑧𝐴 𝑧 < +∞))
107103, 106mpan9 510 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < +∞)
108107, 27syl5ibr 249 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦))
109108a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
110109expd 419 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
111 xrltnr 12568 . . . . . . . . . . . . . . . . . 18 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
11268, 111ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ -∞ < -∞
113 breq2 5040 . . . . . . . . . . . . . . . . 17 (𝑦 = -∞ → (-∞ < 𝑦 ↔ -∞ < -∞))
114112, 113mtbiri 330 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ¬ -∞ < 𝑦)
115114pm2.21d 121 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
1161152a1d 26 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11798, 110, 1163jaoi 1424 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11812, 117sylbi 220 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
120119imp 410 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
121120ralrimiv 3112 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
12275, 121jca 515 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
123 breq2 5040 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
124123notbid 321 . . . . . . . . . . 11 (𝑥 = -∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -∞))
125124ralbidv 3126 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < -∞))
126 breq1 5039 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
127126imbi1d 345 . . . . . . . . . . 11 (𝑥 = -∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
128127ralbidv 3126 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
129125, 128anbi12d 633 . . . . . . . . 9 (𝑥 = -∞ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
130129rspcev 3543 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13168, 122, 130sylancr 590 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13267, 131syldan 594 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
133132adantlr 714 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13450, 133pm2.61dan 812 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
135 pnfxr 10746 . . . . . 6 +∞ ∈ ℝ*
136 ral0 4408 . . . . . . 7 𝑦 ∈ ∅ ¬ 𝑦 < +∞
137 pnfnlt 12577 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
138137pm2.21d 121 . . . . . . . 8 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
139138rgen 3080 . . . . . . 7 𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
140136, 139pm3.2i 474 . . . . . 6 (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
141 breq2 5040 . . . . . . . . . 10 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
142141notbid 321 . . . . . . . . 9 (𝑥 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < +∞))
143142ralbidv 3126 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < +∞))
144 breq1 5039 . . . . . . . . . 10 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
145144imbi1d 345 . . . . . . . . 9 (𝑥 = +∞ → ((𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
146145ralbidv 3126 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
147143, 146anbi12d 633 . . . . . . 7 (𝑥 = +∞ → ((∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
148147rspcev 3543 . . . . . 6 ((+∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
149135, 140, 148mp2an 691 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
1516, 134, 150pm2.61ne 3036 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
152151adantl 485 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
153 ssel 3887 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 71syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ 𝑦 < -∞))
155154ralrimiv 3112 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ 𝑦 < -∞)
156 breq1 5039 . . . . . . 7 (𝑧 = -∞ → (𝑧 < 𝑦 ↔ -∞ < 𝑦))
157156rspcev 3543 . . . . . 6 ((-∞ ∈ 𝐴 ∧ -∞ < 𝑦) → ∃𝑧𝐴 𝑧 < 𝑦)
158157ex 416 . . . . 5 (-∞ ∈ 𝐴 → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
159158ralrimivw 3114 . . . 4 (-∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
160155, 159anim12i 615 . . 3 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
16168, 160, 130sylancr 590 . 2 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
162152, 161jaodan 955 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2951  wral 3070  wrex 3071  wss 3860  c0 4227   class class class wbr 5036  (class class class)co 7156  cr 10587  0cc0 10588  1c1 10589  +∞cpnf 10723  -∞cmnf 10724  *cxr 10725   < clt 10726  cle 10727  cmin 10921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924
This theorem is referenced by:  xrinfmss  12757
  Copyright terms: Public domain W3C validator