MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmsslem Structured version   Visualization version   GIF version

Theorem xrinfmsslem 13204
Description: Lemma for xrinfmss 13206. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrinfmsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmsslem
StepHypRef Expression
1 raleq 3289 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥))
2 rexeq 3288 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
32imbi2d 340 . . . . . . 7 (𝐴 = ∅ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
43ralbidv 3155 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
51, 4anbi12d 632 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
65rexbidv 3156 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
7 infm3 12078 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
8 rexr 11155 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 615 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
109reximi2 3065 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
12 elxr 13012 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
14 ssel 3928 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
15 ltpnf 13016 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → 𝑧 < +∞)
1614, 15syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 < +∞))
1716ancld 550 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴𝑧 < +∞)))
1817eximdv 1918 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 < +∞)))
19 n0 4303 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
20 df-rex 3057 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 𝑧 < +∞ ↔ ∃𝑧(𝑧𝐴𝑧 < +∞))
2118, 19, 203imtr4g 296 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 𝑧 < +∞))
2221imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 𝑧 < +∞)
2322a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
2423ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
25 breq2 5095 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (𝑥 < 𝑦𝑥 < +∞))
26 breq2 5095 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑧 < 𝑦𝑧 < +∞))
2726rexbidv 3156 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < +∞))
2825, 27imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = +∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
2928adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
3024, 29mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3130ex 412 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3231adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
33 nltmnf 13025 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
3433adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < -∞)
35 breq2 5095 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
3635notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3736adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3834, 37mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < 𝑦)
3938pm2.21d 121 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
4039ex 412 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4140ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4213, 32, 413jaod 1431 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4312, 42biimtrid 242 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4443ex 412 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4544ralimdv2 3141 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4645anim2d 612 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4746reximdva 3145 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
48473adant3 1132 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
50493expa 1118 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
51 ralnex 3058 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
52 rexnal 3084 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∀𝑦𝐴 𝑥𝑦)
53 ssel2 3929 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 11210 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5554ancoms 458 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5655ord 864 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5753, 56sylan 580 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5857an32s 652 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑥𝑦𝑦𝑥))
5958reximdva 3145 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6052, 59biimtrrid 243 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6160ralimdva 3144 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
6261imp 406 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
6351, 62sylan2br 595 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
64 breq1 5094 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
6564cbvrexvw 3211 . . . . . . . . 9 (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑧𝐴 𝑧𝑥)
6665ralbii 3078 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
6763, 66sylib 218 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
68 mnfxr 11166 . . . . . . . 8 -∞ ∈ ℝ*
69 ssel 3928 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
70 rexr 11155 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
71 nltmnf 13025 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
7270, 71syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ 𝑦 < -∞)
7369, 72syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ 𝑦 < -∞))
7473ralrimiv 3123 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ 𝑦 < -∞)
7574adantr 480 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦𝐴 ¬ 𝑦 < -∞)
76 peano2rem 11425 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
77 breq2 5095 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 − 1) → (𝑧𝑥𝑧 ≤ (𝑦 − 1)))
7877rexbidv 3156 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 − 1) → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1)))
7978rspcva 3575 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8079adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 − 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ)) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8180ancoms 458 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ (𝑦 − 1) ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8276, 81sylan2 593 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
83 ssel2 3929 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
84 ltm1 11960 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
8584adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 − 1) < 𝑦)
8676ancri 549 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ))
87 lelttr 11200 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℝ ∧ (𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
88873expb 1120 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
8986, 88sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
9085, 89mpan2d 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9183, 90sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9291an32s 652 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9392reximdva 3145 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9493adantll 714 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9582, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦)
9695exp31 419 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
99 0re 11111 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
100 breq2 5095 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑧𝑥𝑧 ≤ 0))
101100rexbidv 3156 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ 0))
102101rspcva 3575 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ 0)
10399, 102mpan 690 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → ∃𝑧𝐴 𝑧 ≤ 0)
10483, 15syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 < +∞)
105104a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (𝑧 ≤ 0 → 𝑧 < +∞))
106105reximdva 3145 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 𝑧 ≤ 0 → ∃𝑧𝐴 𝑧 < +∞))
107103, 106mpan9 506 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < +∞)
108107, 27imbitrrid 246 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦))
109108a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
110109expd 415 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
111 xrltnr 13015 . . . . . . . . . . . . . . . . . 18 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
11268, 111ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ -∞ < -∞
113 breq2 5095 . . . . . . . . . . . . . . . . 17 (𝑦 = -∞ → (-∞ < 𝑦 ↔ -∞ < -∞))
114112, 113mtbiri 327 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ¬ -∞ < 𝑦)
115114pm2.21d 121 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
1161152a1d 26 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11798, 110, 1163jaoi 1430 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11812, 117sylbi 217 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
120119imp 406 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
121120ralrimiv 3123 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
12275, 121jca 511 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
123 breq2 5095 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
124123notbid 318 . . . . . . . . . . 11 (𝑥 = -∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -∞))
125124ralbidv 3155 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < -∞))
126 breq1 5094 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
127126imbi1d 341 . . . . . . . . . . 11 (𝑥 = -∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
128127ralbidv 3155 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
129125, 128anbi12d 632 . . . . . . . . 9 (𝑥 = -∞ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
130129rspcev 3577 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13168, 122, 130sylancr 587 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13267, 131syldan 591 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
133132adantlr 715 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13450, 133pm2.61dan 812 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
135 pnfxr 11163 . . . . . 6 +∞ ∈ ℝ*
136 ral0 4463 . . . . . . 7 𝑦 ∈ ∅ ¬ 𝑦 < +∞
137 pnfnlt 13024 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
138137pm2.21d 121 . . . . . . . 8 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
139138rgen 3049 . . . . . . 7 𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
140136, 139pm3.2i 470 . . . . . 6 (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
141 breq2 5095 . . . . . . . . . 10 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
142141notbid 318 . . . . . . . . 9 (𝑥 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < +∞))
143142ralbidv 3155 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < +∞))
144 breq1 5094 . . . . . . . . . 10 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
145144imbi1d 341 . . . . . . . . 9 (𝑥 = +∞ → ((𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
146145ralbidv 3155 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
147143, 146anbi12d 632 . . . . . . 7 (𝑥 = +∞ → ((∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
148147rspcev 3577 . . . . . 6 ((+∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
149135, 140, 148mp2an 692 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
1516, 134, 150pm2.61ne 3013 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
152151adantl 481 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
153 ssel 3928 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 71syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ 𝑦 < -∞))
155154ralrimiv 3123 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ 𝑦 < -∞)
156 breq1 5094 . . . . . . 7 (𝑧 = -∞ → (𝑧 < 𝑦 ↔ -∞ < 𝑦))
157156rspcev 3577 . . . . . 6 ((-∞ ∈ 𝐴 ∧ -∞ < 𝑦) → ∃𝑧𝐴 𝑧 < 𝑦)
158157ex 412 . . . . 5 (-∞ ∈ 𝐴 → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
159158ralrimivw 3128 . . . 4 (-∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
160155, 159anim12i 613 . . 3 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
16168, 160, 130sylancr 587 . 2 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
162152, 161jaodan 959 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3902  c0 4283   class class class wbr 5091  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004  +∞cpnf 11140  -∞cmnf 11141  *cxr 11142   < clt 11143  cle 11144  cmin 11341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344
This theorem is referenced by:  xrinfmss  13206
  Copyright terms: Public domain W3C validator