MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmsslem Structured version   Visualization version   GIF version

Theorem xrinfmsslem 13291
Description: Lemma for xrinfmss 13293. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrinfmsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmsslem
StepHypRef Expression
1 raleq 3320 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥))
2 rexeq 3319 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
32imbi2d 339 . . . . . . 7 (𝐴 = ∅ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
43ralbidv 3175 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
51, 4anbi12d 629 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
65rexbidv 3176 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
7 infm3 12177 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
8 rexr 11264 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 613 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
109reximi2 3077 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
12 elxr 13100 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 483 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
14 ssel 3974 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
15 ltpnf 13104 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → 𝑧 < +∞)
1614, 15syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 < +∞))
1716ancld 549 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴𝑧 < +∞)))
1817eximdv 1918 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴𝑧 < +∞)))
19 n0 4345 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
20 df-rex 3069 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 𝑧 < +∞ ↔ ∃𝑧(𝑧𝐴𝑧 < +∞))
2118, 19, 203imtr4g 295 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 𝑧 < +∞))
2221imp 405 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 𝑧 < +∞)
2322a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
2423ad2antrr 722 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞))
25 breq2 5151 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (𝑥 < 𝑦𝑥 < +∞))
26 breq2 5151 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑧 < 𝑦𝑧 < +∞))
2726rexbidv 3176 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (∃𝑧𝐴 𝑧 < 𝑦 ↔ ∃𝑧𝐴 𝑧 < +∞))
2825, 27imbi12d 343 . . . . . . . . . . . . . . . . . 18 (𝑦 = +∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
2928adantl 480 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑥 < +∞ → ∃𝑧𝐴 𝑧 < +∞)))
3024, 29mpbird 256 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3130ex 411 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3231adantr 479 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = +∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
33 nltmnf 13113 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
3433adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < -∞)
35 breq2 5151 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
3635notbid 317 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3736adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = -∞) → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
3834, 37mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = -∞) → ¬ 𝑥 < 𝑦)
3938pm2.21d 121 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
4039ex 411 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4140ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 = -∞ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4213, 32, 413jaod 1426 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4312, 42biimtrid 241 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4443ex 411 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (𝑦 ∈ ℝ* → (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4544ralimdv2 3161 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4645anim2d 610 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4746reximdva 3166 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
48473adant3 1130 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
50493expa 1116 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
51 ralnex 3070 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦)
52 rexnal 3098 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑥𝑦 ↔ ¬ ∀𝑦𝐴 𝑥𝑦)
53 ssel2 3976 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 11318 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5554ancoms 457 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝑦𝑦𝑥))
5655ord 860 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5753, 56sylan 578 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥𝑦𝑦𝑥))
5857an32s 648 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑥𝑦𝑦𝑥))
5958reximdva 3166 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6052, 59biimtrrid 242 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 𝑦𝑥))
6160ralimdva 3165 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
6261imp 405 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
6351, 62sylan2br 593 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
64 breq1 5150 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
6564cbvrexvw 3233 . . . . . . . . 9 (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑧𝐴 𝑧𝑥)
6665ralbii 3091 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
6763, 66sylib 217 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥)
68 mnfxr 11275 . . . . . . . 8 -∞ ∈ ℝ*
69 ssel 3974 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
70 rexr 11264 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
71 nltmnf 13113 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
7270, 71syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ 𝑦 < -∞)
7369, 72syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ 𝑦 < -∞))
7473ralrimiv 3143 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ 𝑦 < -∞)
7574adantr 479 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦𝐴 ¬ 𝑦 < -∞)
76 peano2rem 11531 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
77 breq2 5151 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 − 1) → (𝑧𝑥𝑧 ≤ (𝑦 − 1)))
7877rexbidv 3176 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 − 1) → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1)))
7978rspcva 3609 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8079adantrr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 − 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ)) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8180ancoms 457 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ (𝑦 − 1) ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
8276, 81sylan2 591 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 ≤ (𝑦 − 1))
83 ssel2 3976 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
84 ltm1 12060 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
8584adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 − 1) < 𝑦)
8676ancri 548 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ))
87 lelttr 11308 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℝ ∧ (𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
88873expb 1118 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ ((𝑦 − 1) ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
8986, 88sylan2 591 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑦) → 𝑧 < 𝑦))
9085, 89mpan2d 690 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9183, 90sylan 578 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9291an32s 648 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑧 ≤ (𝑦 − 1) → 𝑧 < 𝑦))
9392reximdva 3166 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9493adantll 710 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 𝑧 ≤ (𝑦 − 1) → ∃𝑧𝐴 𝑧 < 𝑦))
9582, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦)
9695exp31 418 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑧 < 𝑦))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
99 0re 11220 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
100 breq2 5151 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑧𝑥𝑧 ≤ 0))
101100rexbidv 3176 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑧𝑥 ↔ ∃𝑧𝐴 𝑧 ≤ 0))
102101rspcva 3609 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑧𝐴 𝑧 ≤ 0)
10399, 102mpan 686 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → ∃𝑧𝐴 𝑧 ≤ 0)
10483, 15syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 < +∞)
105104a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (𝑧 ≤ 0 → 𝑧 < +∞))
106105reximdva 3166 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 𝑧 ≤ 0 → ∃𝑧𝐴 𝑧 < +∞))
107103, 106mpan9 505 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < +∞)
108107, 27imbitrrid 245 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑧 < 𝑦))
109108a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥𝐴 ⊆ ℝ) → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
110109expd 414 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
111 xrltnr 13103 . . . . . . . . . . . . . . . . . 18 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
11268, 111ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ -∞ < -∞
113 breq2 5151 . . . . . . . . . . . . . . . . 17 (𝑦 = -∞ → (-∞ < 𝑦 ↔ -∞ < -∞))
114112, 113mtbiri 326 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ¬ -∞ < 𝑦)
115114pm2.21d 121 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
1161152a1d 26 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11798, 110, 1163jaoi 1425 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
11812, 117sylbi 216 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝐴 ⊆ ℝ → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥 → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
120119imp 405 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (𝑦 ∈ ℝ* → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
121120ralrimiv 3143 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
12275, 121jca 510 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
123 breq2 5151 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
124123notbid 317 . . . . . . . . . . 11 (𝑥 = -∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -∞))
125124ralbidv 3175 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < -∞))
126 breq1 5150 . . . . . . . . . . . 12 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
127126imbi1d 340 . . . . . . . . . . 11 (𝑥 = -∞ → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
128127ralbidv 3175 . . . . . . . . . 10 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
129125, 128anbi12d 629 . . . . . . . . 9 (𝑥 = -∞ → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
130129rspcev 3611 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13168, 122, 130sylancr 585 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑧𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13267, 131syldan 589 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
133132adantlr 711 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
13450, 133pm2.61dan 809 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
135 pnfxr 11272 . . . . . 6 +∞ ∈ ℝ*
136 ral0 4511 . . . . . . 7 𝑦 ∈ ∅ ¬ 𝑦 < +∞
137 pnfnlt 13112 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
138137pm2.21d 121 . . . . . . . 8 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
139138rgen 3061 . . . . . . 7 𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
140136, 139pm3.2i 469 . . . . . 6 (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
141 breq2 5151 . . . . . . . . . 10 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
142141notbid 317 . . . . . . . . 9 (𝑥 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < +∞))
143142ralbidv 3175 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ ∅ ¬ 𝑦 < +∞))
144 breq1 5150 . . . . . . . . . 10 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
145144imbi1d 340 . . . . . . . . 9 (𝑥 = +∞ → ((𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
146145ralbidv 3175 . . . . . . . 8 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
147143, 146anbi12d 629 . . . . . . 7 (𝑥 = +∞ → ((∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))))
148147rspcev 3611 . . . . . 6 ((+∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ 𝑦 < +∞ ∧ ∀𝑦 ∈ ℝ* (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
149135, 140, 148mp2an 688 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)))
1516, 134, 150pm2.61ne 3025 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
152151adantl 480 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
153 ssel 3974 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 71syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ 𝑦 < -∞))
155154ralrimiv 3143 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ 𝑦 < -∞)
156 breq1 5150 . . . . . . 7 (𝑧 = -∞ → (𝑧 < 𝑦 ↔ -∞ < 𝑦))
157156rspcev 3611 . . . . . 6 ((-∞ ∈ 𝐴 ∧ -∞ < 𝑦) → ∃𝑧𝐴 𝑧 < 𝑦)
158157ex 411 . . . . 5 (-∞ ∈ 𝐴 → (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
159158ralrimivw 3148 . . . 4 (-∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
160155, 159anim12i 611 . . 3 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ 𝑦 < -∞ ∧ ∀𝑦 ∈ ℝ* (-∞ < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
16168, 160, 130sylancr 585 . 2 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
162152, 161jaodan 954 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843  w3o 1084  w3a 1085   = wceq 1539  wex 1779  wcel 2104  wne 2938  wral 3059  wrex 3068  wss 3947  c0 4321   class class class wbr 5147  (class class class)co 7411  cr 11111  0cc0 11112  1c1 11113  +∞cpnf 11249  -∞cmnf 11250  *cxr 11251   < clt 11252  cle 11253  cmin 11448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451
This theorem is referenced by:  xrinfmss  13293
  Copyright terms: Public domain W3C validator