MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem3 Structured version   Visualization version   GIF version

Theorem isf34lem3 10335
Description: Lemma for isfin3-4 10342. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem3 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem3
StepHypRef Expression
1 compss.a . . . 4 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
21compsscnv 10331 . . 3 𝐹 = 𝐹
32imaeq1i 6031 . 2 (𝐹 “ (𝐹𝑋)) = (𝐹 “ (𝐹𝑋))
41compssiso 10334 . . . 4 (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
5 isof1o 7301 . . . 4 (𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
6 f1of1 6802 . . . 4 (𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴𝐹:𝒫 𝐴1-1→𝒫 𝐴)
74, 5, 63syl 18 . . 3 (𝐴𝑉𝐹:𝒫 𝐴1-1→𝒫 𝐴)
8 f1imacnv 6819 . . 3 ((𝐹:𝒫 𝐴1-1→𝒫 𝐴𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
97, 8sylan 580 . 2 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
103, 9eqtr3id 2779 1 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3914  wss 3917  𝒫 cpw 4566  cmpt 5191  ccnv 5640  cima 5644  1-1wf1 6511  1-1-ontowf1o 6513   Isom wiso 6515   [] crpss 7701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-rpss 7702
This theorem is referenced by:  isf34lem5  10338  isf34lem7  10339  isf34lem6  10340
  Copyright terms: Public domain W3C validator