![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf34lem3 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-4 10372. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
isf34lem3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
2 | 1 | compsscnv 10361 | . . 3 ⊢ ◡𝐹 = 𝐹 |
3 | 2 | imaeq1i 6046 | . 2 ⊢ (◡𝐹 “ (𝐹 “ 𝑋)) = (𝐹 “ (𝐹 “ 𝑋)) |
4 | 1 | compssiso 10364 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) |
5 | isof1o 7312 | . . . 4 ⊢ (𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴) | |
6 | f1of1 6822 | . . . 4 ⊢ (𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴 → 𝐹:𝒫 𝐴–1-1→𝒫 𝐴) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴–1-1→𝒫 𝐴) |
8 | f1imacnv 6839 | . . 3 ⊢ ((𝐹:𝒫 𝐴–1-1→𝒫 𝐴 ∧ 𝑋 ⊆ 𝒫 𝐴) → (◡𝐹 “ (𝐹 “ 𝑋)) = 𝑋) | |
9 | 7, 8 | sylan 579 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (◡𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
10 | 3, 9 | eqtr3id 2778 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∖ cdif 3937 ⊆ wss 3940 𝒫 cpw 4594 ↦ cmpt 5221 ◡ccnv 5665 “ cima 5669 –1-1→wf1 6530 –1-1-onto→wf1o 6532 Isom wiso 6534 [⊊] crpss 7705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-rpss 7706 |
This theorem is referenced by: isf34lem5 10368 isf34lem7 10369 isf34lem6 10370 |
Copyright terms: Public domain | W3C validator |