| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf34lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-4 10396. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
| Ref | Expression |
|---|---|
| isf34lem3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
| 2 | 1 | compsscnv 10385 | . . 3 ⊢ ◡𝐹 = 𝐹 |
| 3 | 2 | imaeq1i 6044 | . 2 ⊢ (◡𝐹 “ (𝐹 “ 𝑋)) = (𝐹 “ (𝐹 “ 𝑋)) |
| 4 | 1 | compssiso 10388 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) |
| 5 | isof1o 7316 | . . . 4 ⊢ (𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴) | |
| 6 | f1of1 6817 | . . . 4 ⊢ (𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴 → 𝐹:𝒫 𝐴–1-1→𝒫 𝐴) | |
| 7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴–1-1→𝒫 𝐴) |
| 8 | f1imacnv 6834 | . . 3 ⊢ ((𝐹:𝒫 𝐴–1-1→𝒫 𝐴 ∧ 𝑋 ⊆ 𝒫 𝐴) → (◡𝐹 “ (𝐹 “ 𝑋)) = 𝑋) | |
| 9 | 7, 8 | sylan 580 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (◡𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
| 10 | 3, 9 | eqtr3id 2784 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 𝒫 cpw 4575 ↦ cmpt 5201 ◡ccnv 5653 “ cima 5657 –1-1→wf1 6528 –1-1-onto→wf1o 6530 Isom wiso 6532 [⊊] crpss 7716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-rpss 7717 |
| This theorem is referenced by: isf34lem5 10392 isf34lem7 10393 isf34lem6 10394 |
| Copyright terms: Public domain | W3C validator |