Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf34lem3 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-4 10166. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
isf34lem3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
2 | 1 | compsscnv 10155 | . . 3 ⊢ ◡𝐹 = 𝐹 |
3 | 2 | imaeq1i 5967 | . 2 ⊢ (◡𝐹 “ (𝐹 “ 𝑋)) = (𝐹 “ (𝐹 “ 𝑋)) |
4 | 1 | compssiso 10158 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) |
5 | isof1o 7214 | . . . 4 ⊢ (𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴) | |
6 | f1of1 6733 | . . . 4 ⊢ (𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴 → 𝐹:𝒫 𝐴–1-1→𝒫 𝐴) | |
7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴–1-1→𝒫 𝐴) |
8 | f1imacnv 6750 | . . 3 ⊢ ((𝐹:𝒫 𝐴–1-1→𝒫 𝐴 ∧ 𝑋 ⊆ 𝒫 𝐴) → (◡𝐹 “ (𝐹 “ 𝑋)) = 𝑋) | |
9 | 7, 8 | sylan 579 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (◡𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
10 | 3, 9 | eqtr3id 2787 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∖ cdif 3886 ⊆ wss 3889 𝒫 cpw 4536 ↦ cmpt 5160 ◡ccnv 5590 “ cima 5594 –1-1→wf1 6444 –1-1-onto→wf1o 6446 Isom wiso 6448 [⊊] crpss 7595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-rpss 7596 |
This theorem is referenced by: isf34lem5 10162 isf34lem7 10163 isf34lem6 10164 |
Copyright terms: Public domain | W3C validator |