| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf34lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-4 10335. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
| Ref | Expression |
|---|---|
| isf34lem3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
| 2 | 1 | compsscnv 10324 | . . 3 ⊢ ◡𝐹 = 𝐹 |
| 3 | 2 | imaeq1i 6028 | . 2 ⊢ (◡𝐹 “ (𝐹 “ 𝑋)) = (𝐹 “ (𝐹 “ 𝑋)) |
| 4 | 1 | compssiso 10327 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) |
| 5 | isof1o 7298 | . . . 4 ⊢ (𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴) | |
| 6 | f1of1 6799 | . . . 4 ⊢ (𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴 → 𝐹:𝒫 𝐴–1-1→𝒫 𝐴) | |
| 7 | 4, 5, 6 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴–1-1→𝒫 𝐴) |
| 8 | f1imacnv 6816 | . . 3 ⊢ ((𝐹:𝒫 𝐴–1-1→𝒫 𝐴 ∧ 𝑋 ⊆ 𝒫 𝐴) → (◡𝐹 “ (𝐹 “ 𝑋)) = 𝑋) | |
| 9 | 7, 8 | sylan 580 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (◡𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
| 10 | 3, 9 | eqtr3id 2778 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 𝒫 cpw 4563 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 –1-1→wf1 6508 –1-1-onto→wf1o 6510 Isom wiso 6512 [⊊] crpss 7698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-rpss 7699 |
| This theorem is referenced by: isf34lem5 10331 isf34lem7 10332 isf34lem6 10333 |
| Copyright terms: Public domain | W3C validator |