MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem1 Structured version   Visualization version   GIF version

Theorem isf34lem1 10371
Description: Lemma for isfin3-4 10381. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem1 ((𝐴𝑉𝑋𝐴) → (𝐹𝑋) = (𝐴𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 compss.a . . 3 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
2 difeq2 4116 . . . 4 (𝑥 = 𝑎 → (𝐴𝑥) = (𝐴𝑎))
32cbvmptv 5261 . . 3 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴𝑎))
41, 3eqtri 2759 . 2 𝐹 = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴𝑎))
5 difeq2 4116 . 2 (𝑎 = 𝑋 → (𝐴𝑎) = (𝐴𝑋))
6 elpw2g 5344 . . 3 (𝐴𝑉 → (𝑋 ∈ 𝒫 𝐴𝑋𝐴))
76biimpar 477 . 2 ((𝐴𝑉𝑋𝐴) → 𝑋 ∈ 𝒫 𝐴)
8 difexg 5327 . . 3 (𝐴𝑉 → (𝐴𝑋) ∈ V)
98adantr 480 . 2 ((𝐴𝑉𝑋𝐴) → (𝐴𝑋) ∈ V)
104, 5, 7, 9fvmptd3 7021 1 ((𝐴𝑉𝑋𝐴) → (𝐹𝑋) = (𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cdif 3945  wss 3948  𝒫 cpw 4602  cmpt 5231  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  compssiso  10373  isf34lem4  10376  isf34lem7  10378  isf34lem6  10379
  Copyright terms: Public domain W3C validator