| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf34lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-4 10422. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| Ref | Expression |
|---|---|
| compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
| Ref | Expression |
|---|---|
| isf34lem1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
| 2 | difeq2 4120 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑎)) | |
| 3 | 2 | cbvmptv 5255 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑎)) |
| 4 | 1, 3 | eqtri 2765 | . 2 ⊢ 𝐹 = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑎)) |
| 5 | difeq2 4120 | . 2 ⊢ (𝑎 = 𝑋 → (𝐴 ∖ 𝑎) = (𝐴 ∖ 𝑋)) | |
| 6 | elpw2g 5333 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
| 7 | 6 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ∈ 𝒫 𝐴) |
| 8 | difexg 5329 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑋) ∈ V) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐴 ∖ 𝑋) ∈ V) |
| 10 | 4, 5, 7, 9 | fvmptd3 7039 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 ⊆ wss 3951 𝒫 cpw 4600 ↦ cmpt 5225 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 |
| This theorem is referenced by: compssiso 10414 isf34lem4 10417 isf34lem7 10419 isf34lem6 10420 |
| Copyright terms: Public domain | W3C validator |