MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem1 Structured version   Visualization version   GIF version

Theorem isf34lem1 10059
Description: Lemma for isfin3-4 10069. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem1 ((𝐴𝑉𝑋𝐴) → (𝐹𝑋) = (𝐴𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 compss.a . . 3 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
2 difeq2 4047 . . . 4 (𝑥 = 𝑎 → (𝐴𝑥) = (𝐴𝑎))
32cbvmptv 5183 . . 3 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴𝑎))
41, 3eqtri 2766 . 2 𝐹 = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴𝑎))
5 difeq2 4047 . 2 (𝑎 = 𝑋 → (𝐴𝑎) = (𝐴𝑋))
6 elpw2g 5263 . . 3 (𝐴𝑉 → (𝑋 ∈ 𝒫 𝐴𝑋𝐴))
76biimpar 477 . 2 ((𝐴𝑉𝑋𝐴) → 𝑋 ∈ 𝒫 𝐴)
8 difexg 5246 . . 3 (𝐴𝑉 → (𝐴𝑋) ∈ V)
98adantr 480 . 2 ((𝐴𝑉𝑋𝐴) → (𝐴𝑋) ∈ V)
104, 5, 7, 9fvmptd3 6880 1 ((𝐴𝑉𝑋𝐴) → (𝐹𝑋) = (𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  wss 3883  𝒫 cpw 4530  cmpt 5153  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  compssiso  10061  isf34lem4  10064  isf34lem7  10066  isf34lem6  10067
  Copyright terms: Public domain W3C validator