Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf34lem1 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-4 10138. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
isf34lem1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
2 | difeq2 4051 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑎)) | |
3 | 2 | cbvmptv 5187 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑎)) |
4 | 1, 3 | eqtri 2766 | . 2 ⊢ 𝐹 = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑎)) |
5 | difeq2 4051 | . 2 ⊢ (𝑎 = 𝑋 → (𝐴 ∖ 𝑎) = (𝐴 ∖ 𝑋)) | |
6 | elpw2g 5268 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
7 | 6 | biimpar 478 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ∈ 𝒫 𝐴) |
8 | difexg 5251 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑋) ∈ V) | |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐴 ∖ 𝑋) ∈ V) |
10 | 4, 5, 7, 9 | fvmptd3 6898 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 𝒫 cpw 4533 ↦ cmpt 5157 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: compssiso 10130 isf34lem4 10133 isf34lem7 10135 isf34lem6 10136 |
Copyright terms: Public domain | W3C validator |