![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf34lem1 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-4 9492. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
isf34lem1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 5019 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
2 | 1 | biimpar 470 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ∈ 𝒫 𝐴) |
3 | difexg 5003 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑋) ∈ V) | |
4 | 3 | adantr 473 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐴 ∖ 𝑋) ∈ V) |
5 | difeq2 3920 | . . 3 ⊢ (𝑎 = 𝑋 → (𝐴 ∖ 𝑎) = (𝐴 ∖ 𝑋)) | |
6 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
7 | difeq2 3920 | . . . . 5 ⊢ (𝑥 = 𝑎 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑎)) | |
8 | 7 | cbvmptv 4943 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑎)) |
9 | 6, 8 | eqtri 2821 | . . 3 ⊢ 𝐹 = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑎)) |
10 | 5, 9 | fvmptg 6505 | . 2 ⊢ ((𝑋 ∈ 𝒫 𝐴 ∧ (𝐴 ∖ 𝑋) ∈ V) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) |
11 | 2, 4, 10 | syl2anc 580 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∖ cdif 3766 ⊆ wss 3769 𝒫 cpw 4349 ↦ cmpt 4922 ‘cfv 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 |
This theorem is referenced by: compssiso 9484 isf34lem4 9487 isf34lem7 9489 isf34lem6 9490 |
Copyright terms: Public domain | W3C validator |