Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf34lem1 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-4 10069. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
isf34lem1 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
2 | difeq2 4047 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑎)) | |
3 | 2 | cbvmptv 5183 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑎)) |
4 | 1, 3 | eqtri 2766 | . 2 ⊢ 𝐹 = (𝑎 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑎)) |
5 | difeq2 4047 | . 2 ⊢ (𝑎 = 𝑋 → (𝐴 ∖ 𝑎) = (𝐴 ∖ 𝑋)) | |
6 | elpw2g 5263 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
7 | 6 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ∈ 𝒫 𝐴) |
8 | difexg 5246 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝑋) ∈ V) | |
9 | 8 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐴 ∖ 𝑋) ∈ V) |
10 | 4, 5, 7, 9 | fvmptd3 6880 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝐹‘𝑋) = (𝐴 ∖ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 𝒫 cpw 4530 ↦ cmpt 5153 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: compssiso 10061 isf34lem4 10064 isf34lem7 10066 isf34lem6 10067 |
Copyright terms: Public domain | W3C validator |