MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem5 Structured version   Visualization version   GIF version

Theorem isf34lem5 10447
Description: Lemma for isfin3-4 10451. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem5
StepHypRef Expression
1 imassrn 6100 . . . . . . 7 (𝐹𝑋) ⊆ ran 𝐹
2 compss.a . . . . . . . . . 10 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem2 10442 . . . . . . . . 9 (𝐴𝑉𝐹:𝒫 𝐴⟶𝒫 𝐴)
43adantr 480 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
54frnd 6755 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ran 𝐹 ⊆ 𝒫 𝐴)
61, 5sstrid 4020 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝒫 𝐴)
7 simprl 770 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ 𝒫 𝐴)
84fdmd 6757 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → dom 𝐹 = 𝒫 𝐴)
97, 8sseqtrrd 4050 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ dom 𝐹)
10 sseqin2 4244 . . . . . . . . 9 (𝑋 ⊆ dom 𝐹 ↔ (dom 𝐹𝑋) = 𝑋)
119, 10sylib 218 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) = 𝑋)
12 simprr 772 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
1311, 12eqnetrd 3014 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) ≠ ∅)
14 imadisj 6109 . . . . . . . 8 ((𝐹𝑋) = ∅ ↔ (dom 𝐹𝑋) = ∅)
1514necon3bii 2999 . . . . . . 7 ((𝐹𝑋) ≠ ∅ ↔ (dom 𝐹𝑋) ≠ ∅)
1613, 15sylibr 234 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ≠ ∅)
176, 16jca 511 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅))
182isf34lem4 10446 . . . . 5 ((𝐴𝑉 ∧ ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
1917, 18syldan 590 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
202isf34lem3 10444 . . . . . 6 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2120adantrr 716 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2221inteqd 4975 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2319, 22eqtrd 2780 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = 𝑋)
2423fveq2d 6924 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹 𝑋))
252compsscnv 10440 . . . 4 𝐹 = 𝐹
2625fveq1i 6921 . . 3 (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹‘(𝐹 (𝐹𝑋)))
272compssiso 10443 . . . . 5 (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
28 isof1o 7359 . . . . 5 (𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
2927, 28syl 17 . . . 4 (𝐴𝑉𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
30 sspwuni 5123 . . . . . 6 ((𝐹𝑋) ⊆ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴)
316, 30sylib 218 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝐴)
32 elpw2g 5351 . . . . . 6 (𝐴𝑉 → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3332adantr 480 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3431, 33mpbird 257 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ∈ 𝒫 𝐴)
35 f1ocnvfv1 7312 . . . 4 ((𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴 (𝐹𝑋) ∈ 𝒫 𝐴) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3629, 34, 35syl2an2r 684 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3726, 36eqtr3id 2794 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3824, 37eqtr3d 2782 1 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   cint 4970  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  wf 6569  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574   [] crpss 7757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-rpss 7758
This theorem is referenced by:  isf34lem7  10448
  Copyright terms: Public domain W3C validator