MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem5 Structured version   Visualization version   GIF version

Theorem isf34lem5 10421
Description: Lemma for isfin3-4 10425. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem5
StepHypRef Expression
1 imassrn 6080 . . . . . . 7 (𝐹𝑋) ⊆ ran 𝐹
2 compss.a . . . . . . . . . 10 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem2 10416 . . . . . . . . 9 (𝐴𝑉𝐹:𝒫 𝐴⟶𝒫 𝐴)
43adantr 479 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
54frnd 6736 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ran 𝐹 ⊆ 𝒫 𝐴)
61, 5sstrid 3991 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝒫 𝐴)
7 simprl 769 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ 𝒫 𝐴)
84fdmd 6738 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → dom 𝐹 = 𝒫 𝐴)
97, 8sseqtrrd 4021 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ dom 𝐹)
10 sseqin2 4216 . . . . . . . . 9 (𝑋 ⊆ dom 𝐹 ↔ (dom 𝐹𝑋) = 𝑋)
119, 10sylib 217 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) = 𝑋)
12 simprr 771 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
1311, 12eqnetrd 2998 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) ≠ ∅)
14 imadisj 6089 . . . . . . . 8 ((𝐹𝑋) = ∅ ↔ (dom 𝐹𝑋) = ∅)
1514necon3bii 2983 . . . . . . 7 ((𝐹𝑋) ≠ ∅ ↔ (dom 𝐹𝑋) ≠ ∅)
1613, 15sylibr 233 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ≠ ∅)
176, 16jca 510 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅))
182isf34lem4 10420 . . . . 5 ((𝐴𝑉 ∧ ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
1917, 18syldan 589 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
202isf34lem3 10418 . . . . . 6 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2120adantrr 715 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2221inteqd 4959 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2319, 22eqtrd 2766 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = 𝑋)
2423fveq2d 6905 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹 𝑋))
252compsscnv 10414 . . . 4 𝐹 = 𝐹
2625fveq1i 6902 . . 3 (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹‘(𝐹 (𝐹𝑋)))
272compssiso 10417 . . . . 5 (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
28 isof1o 7335 . . . . 5 (𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
2927, 28syl 17 . . . 4 (𝐴𝑉𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
30 sspwuni 5108 . . . . . 6 ((𝐹𝑋) ⊆ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴)
316, 30sylib 217 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝐴)
32 elpw2g 5351 . . . . . 6 (𝐴𝑉 → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3332adantr 479 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3431, 33mpbird 256 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ∈ 𝒫 𝐴)
35 f1ocnvfv1 7290 . . . 4 ((𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴 (𝐹𝑋) ∈ 𝒫 𝐴) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3629, 34, 35syl2an2r 683 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3726, 36eqtr3id 2780 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3824, 37eqtr3d 2768 1 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  cdif 3944  cin 3946  wss 3947  c0 4325  𝒫 cpw 4607   cuni 4913   cint 4954  cmpt 5236  ccnv 5681  dom cdm 5682  ran crn 5683  cima 5685  wf 6550  1-1-ontowf1o 6553  cfv 6554   Isom wiso 6555   [] crpss 7733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-rpss 7734
This theorem is referenced by:  isf34lem7  10422
  Copyright terms: Public domain W3C validator