MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem5 Structured version   Visualization version   GIF version

Theorem isf34lem5 9800
Description: Lemma for isfin3-4 9804. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem5
StepHypRef Expression
1 imassrn 5940 . . . . . . 7 (𝐹𝑋) ⊆ ran 𝐹
2 compss.a . . . . . . . . . 10 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem2 9795 . . . . . . . . 9 (𝐴𝑉𝐹:𝒫 𝐴⟶𝒫 𝐴)
43adantr 483 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
54frnd 6521 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ran 𝐹 ⊆ 𝒫 𝐴)
61, 5sstrid 3978 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝒫 𝐴)
7 simprl 769 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ 𝒫 𝐴)
84fdmd 6523 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → dom 𝐹 = 𝒫 𝐴)
97, 8sseqtrrd 4008 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ dom 𝐹)
10 sseqin2 4192 . . . . . . . . 9 (𝑋 ⊆ dom 𝐹 ↔ (dom 𝐹𝑋) = 𝑋)
119, 10sylib 220 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) = 𝑋)
12 simprr 771 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
1311, 12eqnetrd 3083 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) ≠ ∅)
14 imadisj 5948 . . . . . . . 8 ((𝐹𝑋) = ∅ ↔ (dom 𝐹𝑋) = ∅)
1514necon3bii 3068 . . . . . . 7 ((𝐹𝑋) ≠ ∅ ↔ (dom 𝐹𝑋) ≠ ∅)
1613, 15sylibr 236 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ≠ ∅)
176, 16jca 514 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅))
182isf34lem4 9799 . . . . 5 ((𝐴𝑉 ∧ ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
1917, 18syldan 593 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
202isf34lem3 9797 . . . . . 6 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2120adantrr 715 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2221inteqd 4881 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2319, 22eqtrd 2856 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = 𝑋)
2423fveq2d 6674 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹 𝑋))
252compsscnv 9793 . . . 4 𝐹 = 𝐹
2625fveq1i 6671 . . 3 (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹‘(𝐹 (𝐹𝑋)))
272compssiso 9796 . . . . 5 (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
28 isof1o 7076 . . . . 5 (𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
2927, 28syl 17 . . . 4 (𝐴𝑉𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
30 sspwuni 5022 . . . . . 6 ((𝐹𝑋) ⊆ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴)
316, 30sylib 220 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝐴)
32 elpw2g 5247 . . . . . 6 (𝐴𝑉 → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3332adantr 483 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3431, 33mpbird 259 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ∈ 𝒫 𝐴)
35 f1ocnvfv1 7033 . . . 4 ((𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴 (𝐹𝑋) ∈ 𝒫 𝐴) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3629, 34, 35syl2an2r 683 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3726, 36syl5eqr 2870 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3824, 37eqtr3d 2858 1 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  cdif 3933  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539   cuni 4838   cint 4876  cmpt 5146  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  wf 6351  1-1-ontowf1o 6354  cfv 6355   Isom wiso 6356   [] crpss 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-rpss 7449
This theorem is referenced by:  isf34lem7  9801
  Copyright terms: Public domain W3C validator