Proof of Theorem isf34lem5
Step | Hyp | Ref
| Expression |
1 | | imassrn 5980 |
. . . . . . 7
⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 |
2 | | compss.a |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
3 | 2 | isf34lem2 10129 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴⟶𝒫 𝐴) |
4 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴) |
5 | 4 | frnd 6608 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → ran 𝐹 ⊆ 𝒫 𝐴) |
6 | 1, 5 | sstrid 3932 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹 “ 𝑋) ⊆ 𝒫 𝐴) |
7 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ 𝒫 𝐴) |
8 | 4 | fdmd 6611 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → dom 𝐹 = 𝒫 𝐴) |
9 | 7, 8 | sseqtrrd 3962 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ dom 𝐹) |
10 | | sseqin2 4149 |
. . . . . . . . 9
⊢ (𝑋 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑋) = 𝑋) |
11 | 9, 10 | sylib 217 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (dom 𝐹 ∩ 𝑋) = 𝑋) |
12 | | simprr 770 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → 𝑋 ≠ ∅) |
13 | 11, 12 | eqnetrd 3011 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (dom 𝐹 ∩ 𝑋) ≠ ∅) |
14 | | imadisj 5988 |
. . . . . . . 8
⊢ ((𝐹 “ 𝑋) = ∅ ↔ (dom 𝐹 ∩ 𝑋) = ∅) |
15 | 14 | necon3bii 2996 |
. . . . . . 7
⊢ ((𝐹 “ 𝑋) ≠ ∅ ↔ (dom 𝐹 ∩ 𝑋) ≠ ∅) |
16 | 13, 15 | sylibr 233 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹 “ 𝑋) ≠ ∅) |
17 | 6, 16 | jca 512 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → ((𝐹 “ 𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹 “ 𝑋) ≠ ∅)) |
18 | 2 | isf34lem4 10133 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ((𝐹 “ 𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹 “ 𝑋) ≠ ∅)) → (𝐹‘∪ (𝐹 “ 𝑋)) = ∩ (𝐹 “ (𝐹 “ 𝑋))) |
19 | 17, 18 | syldan 591 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹‘∪ (𝐹 “ 𝑋)) = ∩ (𝐹 “ (𝐹 “ 𝑋))) |
20 | 2 | isf34lem3 10131 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
21 | 20 | adantrr 714 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹 “ (𝐹 “ 𝑋)) = 𝑋) |
22 | 21 | inteqd 4884 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → ∩ (𝐹
“ (𝐹 “ 𝑋)) = ∩ 𝑋) |
23 | 19, 22 | eqtrd 2778 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹‘∪ (𝐹 “ 𝑋)) = ∩ 𝑋) |
24 | 23 | fveq2d 6778 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹‘(𝐹‘∪ (𝐹 “ 𝑋))) = (𝐹‘∩ 𝑋)) |
25 | 2 | compsscnv 10127 |
. . . 4
⊢ ◡𝐹 = 𝐹 |
26 | 25 | fveq1i 6775 |
. . 3
⊢ (◡𝐹‘(𝐹‘∪ (𝐹 “ 𝑋))) = (𝐹‘(𝐹‘∪ (𝐹 “ 𝑋))) |
27 | 2 | compssiso 10130 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴)) |
28 | | isof1o 7194 |
. . . . 5
⊢ (𝐹 Isom [⊊] , ◡ [⊊] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴) |
29 | 27, 28 | syl 17 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴) |
30 | | sspwuni 5029 |
. . . . . 6
⊢ ((𝐹 “ 𝑋) ⊆ 𝒫 𝐴 ↔ ∪ (𝐹 “ 𝑋) ⊆ 𝐴) |
31 | 6, 30 | sylib 217 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → ∪ (𝐹
“ 𝑋) ⊆ 𝐴) |
32 | | elpw2g 5268 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (∪ (𝐹 “ 𝑋) ∈ 𝒫 𝐴 ↔ ∪ (𝐹 “ 𝑋) ⊆ 𝐴)) |
33 | 32 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (∪ (𝐹
“ 𝑋) ∈ 𝒫
𝐴 ↔ ∪ (𝐹
“ 𝑋) ⊆ 𝐴)) |
34 | 31, 33 | mpbird 256 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → ∪ (𝐹
“ 𝑋) ∈ 𝒫
𝐴) |
35 | | f1ocnvfv1 7148 |
. . . 4
⊢ ((𝐹:𝒫 𝐴–1-1-onto→𝒫 𝐴 ∧ ∪ (𝐹 “ 𝑋) ∈ 𝒫 𝐴) → (◡𝐹‘(𝐹‘∪ (𝐹 “ 𝑋))) = ∪ (𝐹 “ 𝑋)) |
36 | 29, 34, 35 | syl2an2r 682 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (◡𝐹‘(𝐹‘∪ (𝐹 “ 𝑋))) = ∪ (𝐹 “ 𝑋)) |
37 | 26, 36 | eqtr3id 2792 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹‘(𝐹‘∪ (𝐹 “ 𝑋))) = ∪ (𝐹 “ 𝑋)) |
38 | 24, 37 | eqtr3d 2780 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅)) → (𝐹‘∩ 𝑋) = ∪
(𝐹 “ 𝑋)) |