MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem5 Structured version   Visualization version   GIF version

Theorem isf34lem5 10418
Description: Lemma for isfin3-4 10422. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem5
StepHypRef Expression
1 imassrn 6089 . . . . . . 7 (𝐹𝑋) ⊆ ran 𝐹
2 compss.a . . . . . . . . . 10 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem2 10413 . . . . . . . . 9 (𝐴𝑉𝐹:𝒫 𝐴⟶𝒫 𝐴)
43adantr 480 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
54frnd 6744 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ran 𝐹 ⊆ 𝒫 𝐴)
61, 5sstrid 3995 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝒫 𝐴)
7 simprl 771 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ 𝒫 𝐴)
84fdmd 6746 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → dom 𝐹 = 𝒫 𝐴)
97, 8sseqtrrd 4021 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ⊆ dom 𝐹)
10 sseqin2 4223 . . . . . . . . 9 (𝑋 ⊆ dom 𝐹 ↔ (dom 𝐹𝑋) = 𝑋)
119, 10sylib 218 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) = 𝑋)
12 simprr 773 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
1311, 12eqnetrd 3008 . . . . . . 7 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (dom 𝐹𝑋) ≠ ∅)
14 imadisj 6098 . . . . . . . 8 ((𝐹𝑋) = ∅ ↔ (dom 𝐹𝑋) = ∅)
1514necon3bii 2993 . . . . . . 7 ((𝐹𝑋) ≠ ∅ ↔ (dom 𝐹𝑋) ≠ ∅)
1613, 15sylibr 234 . . . . . 6 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ≠ ∅)
176, 16jca 511 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅))
182isf34lem4 10417 . . . . 5 ((𝐴𝑉 ∧ ((𝐹𝑋) ⊆ 𝒫 𝐴 ∧ (𝐹𝑋) ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
1917, 18syldan 591 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = (𝐹 “ (𝐹𝑋)))
202isf34lem3 10415 . . . . . 6 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2120adantrr 717 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2221inteqd 4951 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 “ (𝐹𝑋)) = 𝑋)
2319, 22eqtrd 2777 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 (𝐹𝑋)) = 𝑋)
2423fveq2d 6910 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹 𝑋))
252compsscnv 10411 . . . 4 𝐹 = 𝐹
2625fveq1i 6907 . . 3 (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹‘(𝐹 (𝐹𝑋)))
272compssiso 10414 . . . . 5 (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
28 isof1o 7343 . . . . 5 (𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
2927, 28syl 17 . . . 4 (𝐴𝑉𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
30 sspwuni 5100 . . . . . 6 ((𝐹𝑋) ⊆ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴)
316, 30sylib 218 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ⊆ 𝐴)
32 elpw2g 5333 . . . . . 6 (𝐴𝑉 → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3332adantr 480 . . . . 5 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → ( (𝐹𝑋) ∈ 𝒫 𝐴 (𝐹𝑋) ⊆ 𝐴))
3431, 33mpbird 257 . . . 4 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹𝑋) ∈ 𝒫 𝐴)
35 f1ocnvfv1 7296 . . . 4 ((𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴 (𝐹𝑋) ∈ 𝒫 𝐴) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3629, 34, 35syl2an2r 685 . . 3 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3726, 36eqtr3id 2791 . 2 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹‘(𝐹 (𝐹𝑋))) = (𝐹𝑋))
3824, 37eqtr3d 2779 1 ((𝐴𝑉 ∧ (𝑋 ⊆ 𝒫 𝐴𝑋 ≠ ∅)) → (𝐹 𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600   cuni 4907   cint 4946  cmpt 5225  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688  wf 6557  1-1-ontowf1o 6560  cfv 6561   Isom wiso 6562   [] crpss 7742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-rpss 7743
This theorem is referenced by:  isf34lem7  10419
  Copyright terms: Public domain W3C validator