MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compss Structured version   Visualization version   GIF version

Theorem compss 10063
Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
compss (𝐹𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴𝑦) ∈ 𝐺}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐹   𝑦,𝐺
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem compss
StepHypRef Expression
1 compss.a . . . 4 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
21compsscnv 10058 . . 3 𝐹 = 𝐹
32imaeq1i 5955 . 2 (𝐹𝐺) = (𝐹𝐺)
4 difeq2 4047 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
54cbvmptv 5183 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦))
61, 5eqtri 2766 . . 3 𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦))
76mptpreima 6130 . 2 (𝐹𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴𝑦) ∈ 𝐺}
83, 7eqtr3i 2768 1 (𝐹𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴𝑦) ∈ 𝐺}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {crab 3067  cdif 3880  𝒫 cpw 4530  cmpt 5153  ccnv 5579  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  isf34lem4  10064
  Copyright terms: Public domain W3C validator