![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > compss | Structured version Visualization version GIF version |
Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
Ref | Expression |
---|---|
compss | ⊢ (𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
2 | 1 | compsscnv 10372 | . . 3 ⊢ ◡𝐹 = 𝐹 |
3 | 2 | imaeq1i 6056 | . 2 ⊢ (◡𝐹 “ 𝐺) = (𝐹 “ 𝐺) |
4 | difeq2 4116 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
5 | 4 | cbvmptv 5261 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
6 | 1, 5 | eqtri 2759 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
7 | 6 | mptpreima 6237 | . 2 ⊢ (◡𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
8 | 3, 7 | eqtr3i 2761 | 1 ⊢ (𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 {crab 3431 ∖ cdif 3945 𝒫 cpw 4602 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: isf34lem4 10378 |
Copyright terms: Public domain | W3C validator |