MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  compss Structured version   Visualization version   GIF version

Theorem compss 10395
Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
compss (𝐹𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴𝑦) ∈ 𝐺}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐹   𝑦,𝐺
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem compss
StepHypRef Expression
1 compss.a . . . 4 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
21compsscnv 10390 . . 3 𝐹 = 𝐹
32imaeq1i 6049 . 2 (𝐹𝐺) = (𝐹𝐺)
4 difeq2 4100 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
54cbvmptv 5230 . . . 4 (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦))
61, 5eqtri 2759 . . 3 𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴𝑦))
76mptpreima 6232 . 2 (𝐹𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴𝑦) ∈ 𝐺}
83, 7eqtr3i 2761 1 (𝐹𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴𝑦) ∈ 𝐺}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3420  cdif 3928  𝒫 cpw 4580  cmpt 5206  ccnv 5658  cima 5662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-mpt 5207  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672
This theorem is referenced by:  isf34lem4  10396
  Copyright terms: Public domain W3C validator