| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > compss | Structured version Visualization version GIF version | ||
| Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
| Ref | Expression |
|---|---|
| compss | ⊢ (𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
| 2 | 1 | compsscnv 10394 | . . 3 ⊢ ◡𝐹 = 𝐹 |
| 3 | 2 | imaeq1i 6057 | . 2 ⊢ (◡𝐹 “ 𝐺) = (𝐹 “ 𝐺) |
| 4 | difeq2 4102 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
| 5 | 4 | cbvmptv 5237 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
| 6 | 1, 5 | eqtri 2757 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
| 7 | 6 | mptpreima 6240 | . 2 ⊢ (◡𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
| 8 | 3, 7 | eqtr3i 2759 | 1 ⊢ (𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {crab 3420 ∖ cdif 3930 𝒫 cpw 4582 ↦ cmpt 5207 ◡ccnv 5666 “ cima 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-mpt 5208 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 |
| This theorem is referenced by: isf34lem4 10400 |
| Copyright terms: Public domain | W3C validator |