| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > compss | Structured version Visualization version GIF version | ||
| Description: Express image under of the complementation isomorphism. (Contributed by Stefan O'Rear, 5-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| compss.a | ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
| Ref | Expression |
|---|---|
| compss | ⊢ (𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) | |
| 2 | 1 | compsscnv 10390 | . . 3 ⊢ ◡𝐹 = 𝐹 |
| 3 | 2 | imaeq1i 6049 | . 2 ⊢ (◡𝐹 “ 𝐺) = (𝐹 “ 𝐺) |
| 4 | difeq2 4100 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
| 5 | 4 | cbvmptv 5230 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
| 6 | 1, 5 | eqtri 2759 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑦)) |
| 7 | 6 | mptpreima 6232 | . 2 ⊢ (◡𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
| 8 | 3, 7 | eqtr3i 2761 | 1 ⊢ (𝐹 “ 𝐺) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝐴 ∖ 𝑦) ∈ 𝐺} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3420 ∖ cdif 3928 𝒫 cpw 4580 ↦ cmpt 5206 ◡ccnv 5658 “ cima 5662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: isf34lem4 10396 |
| Copyright terms: Public domain | W3C validator |