Step | Hyp | Ref
| Expression |
1 | | simpr1 1192 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → Fun 𝐻) |
2 | | fvimacnvi 6911 |
. . . 4
⊢ ((Fun
𝐻 ∧ 𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻‘𝑥) ∈ (dom 𝐹 ∩ dom 𝐺)) |
3 | 1, 2 | sylan 579 |
. . 3
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻‘𝑥) ∈ (dom 𝐹 ∩ dom 𝐺)) |
4 | 1 | funfnd 6449 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → 𝐻 Fn dom 𝐻) |
5 | | dffn5 6810 |
. . . . . 6
⊢ (𝐻 Fn dom 𝐻 ↔ 𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥))) |
6 | 4, 5 | sylib 217 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → 𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥))) |
7 | 6 | reseq1d 5879 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = ((𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥)) ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) |
8 | | cnvimass 5978 |
. . . . 5
⊢ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻 |
9 | | resmpt 5934 |
. . . . 5
⊢ ((◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻 → ((𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥)) ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻‘𝑥))) |
10 | 8, 9 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ dom 𝐻 ↦ (𝐻‘𝑥)) ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻‘𝑥)) |
11 | 7, 10 | eqtrdi 2795 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻‘𝑥))) |
12 | | offval3 7798 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 ∘f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑦)𝑅(𝐺‘𝑦)))) |
13 | 12 | adantr 480 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐹 ∘f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑦)𝑅(𝐺‘𝑦)))) |
14 | | fveq2 6756 |
. . . 4
⊢ (𝑦 = (𝐻‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐻‘𝑥))) |
15 | | fveq2 6756 |
. . . 4
⊢ (𝑦 = (𝐻‘𝑥) → (𝐺‘𝑦) = (𝐺‘(𝐻‘𝑥))) |
16 | 14, 15 | oveq12d 7273 |
. . 3
⊢ (𝑦 = (𝐻‘𝑥) → ((𝐹‘𝑦)𝑅(𝐺‘𝑦)) = ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥)))) |
17 | 3, 11, 13, 16 | fmptco 6983 |
. 2
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
18 | | ovex 7288 |
. . . . . . . 8
⊢ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V |
19 | 18 | rgenw 3075 |
. . . . . . 7
⊢
∀𝑥 ∈
(dom 𝐹 ∩ dom 𝐺)((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V |
20 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
21 | 20 | fnmpt 6557 |
. . . . . . 7
⊢
(∀𝑥 ∈
(dom 𝐹 ∩ dom 𝐺)((𝐹‘𝑥)𝑅(𝐺‘𝑥)) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn (dom 𝐹 ∩ dom 𝐺)) |
22 | 19, 21 | mp1i 13 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn (dom 𝐹 ∩ dom 𝐺)) |
23 | | offval3 7798 |
. . . . . . . 8
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
24 | 23 | adantr 480 |
. . . . . . 7
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
25 | 24 | fneq1d 6510 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺) ↔ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))) |
26 | 22, 25 | mpbird 256 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐹 ∘f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺)) |
27 | 26 | fndmd 6522 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → dom (𝐹 ∘f 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺)) |
28 | | eqimss 3973 |
. . . 4
⊢ (dom
(𝐹 ∘f
𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺) → dom (𝐹 ∘f 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺)) |
29 | | cores2 6152 |
. . . 4
⊢ (dom
(𝐹 ∘f
𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺) → ((𝐹 ∘f 𝑅𝐺) ∘ ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻)) |
30 | 27, 28, 29 | 3syl 18 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻)) |
31 | | funcnvres2 6498 |
. . . . 5
⊢ (Fun
𝐻 → ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) |
32 | 1, 31 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) |
33 | 32 | coeq2d 5760 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ ◡(◡𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹 ∘f 𝑅𝐺) ∘ (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))))) |
34 | 30, 33 | eqtr3d 2780 |
. 2
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘f 𝑅𝐺) ∘ (𝐻 ↾ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))))) |
35 | | simpr2 1193 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐹 ∘ 𝐻) ∈ V) |
36 | | simpr3 1194 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝐺 ∘ 𝐻) ∈ V) |
37 | | offval3 7798 |
. . . 4
⊢ (((𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V) → ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻)) = (𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ↦ (((𝐹 ∘ 𝐻)‘𝑥)𝑅((𝐺 ∘ 𝐻)‘𝑥)))) |
38 | 35, 36, 37 | syl2anc 583 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻)) = (𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ↦ (((𝐹 ∘ 𝐻)‘𝑥)𝑅((𝐺 ∘ 𝐻)‘𝑥)))) |
39 | | dmco 6147 |
. . . . . 6
⊢ dom
(𝐹 ∘ 𝐻) = (◡𝐻 “ dom 𝐹) |
40 | | dmco 6147 |
. . . . . 6
⊢ dom
(𝐺 ∘ 𝐻) = (◡𝐻 “ dom 𝐺) |
41 | 39, 40 | ineq12i 4141 |
. . . . 5
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) = ((◡𝐻 “ dom 𝐹) ∩ (◡𝐻 “ dom 𝐺)) |
42 | | inpreima 6923 |
. . . . . 6
⊢ (Fun
𝐻 → (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((◡𝐻 “ dom 𝐹) ∩ (◡𝐻 “ dom 𝐺))) |
43 | 1, 42 | syl 17 |
. . . . 5
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((◡𝐻 “ dom 𝐹) ∩ (◡𝐻 “ dom 𝐺))) |
44 | 41, 43 | eqtr4id 2798 |
. . . 4
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) = (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺))) |
45 | | simplr1 1213 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → Fun 𝐻) |
46 | | inss2 4160 |
. . . . . . . . 9
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom (𝐺 ∘ 𝐻) |
47 | | dmcoss 5869 |
. . . . . . . . 9
⊢ dom
(𝐺 ∘ 𝐻) ⊆ dom 𝐻 |
48 | 46, 47 | sstri 3926 |
. . . . . . . 8
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom 𝐻 |
49 | 48 | a1i 11 |
. . . . . . 7
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom 𝐻) |
50 | 49 | sselda 3917 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → 𝑥 ∈ dom 𝐻) |
51 | | fvco 6848 |
. . . . . 6
⊢ ((Fun
𝐻 ∧ 𝑥 ∈ dom 𝐻) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
52 | 45, 50, 51 | syl2anc 583 |
. . . . 5
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
53 | | inss1 4159 |
. . . . . . . . 9
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom (𝐹 ∘ 𝐻) |
54 | | dmcoss 5869 |
. . . . . . . . 9
⊢ dom
(𝐹 ∘ 𝐻) ⊆ dom 𝐻 |
55 | 53, 54 | sstri 3926 |
. . . . . . . 8
⊢ (dom
(𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom 𝐻 |
56 | 55 | a1i 11 |
. . . . . . 7
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ⊆ dom 𝐻) |
57 | 56 | sselda 3917 |
. . . . . 6
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → 𝑥 ∈ dom 𝐻) |
58 | | fvco 6848 |
. . . . . 6
⊢ ((Fun
𝐻 ∧ 𝑥 ∈ dom 𝐻) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) |
59 | 45, 57, 58 | syl2anc 583 |
. . . . 5
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) |
60 | 52, 59 | oveq12d 7273 |
. . . 4
⊢ ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻))) → (((𝐹 ∘ 𝐻)‘𝑥)𝑅((𝐺 ∘ 𝐻)‘𝑥)) = ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥)))) |
61 | 44, 60 | mpteq12dva 5159 |
. . 3
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → (𝑥 ∈ (dom (𝐹 ∘ 𝐻) ∩ dom (𝐺 ∘ 𝐻)) ↦ (((𝐹 ∘ 𝐻)‘𝑥)𝑅((𝐺 ∘ 𝐻)‘𝑥))) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
62 | 38, 61 | eqtrd 2778 |
. 2
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻)) = (𝑥 ∈ (◡𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
63 | 17, 34, 62 | 3eqtr4d 2788 |
1
⊢ (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹 ∘ 𝐻) ∈ V ∧ (𝐺 ∘ 𝐻) ∈ V)) → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻))) |