MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofco2 Structured version   Visualization version   GIF version

Theorem ofco2 21953
Description: Distribution law for the function operation and the composition of functions. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Assertion
Ref Expression
ofco2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))

Proof of Theorem ofco2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → Fun 𝐻)
2 fvimacnvi 7054 . . . 4 ((Fun 𝐻𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻𝑥) ∈ (dom 𝐹 ∩ dom 𝐺))
31, 2sylan 581 . . 3 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻𝑥) ∈ (dom 𝐹 ∩ dom 𝐺))
41funfnd 6580 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → 𝐻 Fn dom 𝐻)
5 dffn5 6951 . . . . . 6 (𝐻 Fn dom 𝐻𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)))
64, 5sylib 217 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → 𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)))
76reseq1d 5981 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
8 cnvimass 6081 . . . . 5 (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻
9 resmpt 6038 . . . . 5 ((𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻 → ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥)))
108, 9ax-mp 5 . . . 4 ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥))
117, 10eqtrdi 2789 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥)))
12 offval3 7969 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
1312adantr 482 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
14 fveq2 6892 . . . 4 (𝑦 = (𝐻𝑥) → (𝐹𝑦) = (𝐹‘(𝐻𝑥)))
15 fveq2 6892 . . . 4 (𝑦 = (𝐻𝑥) → (𝐺𝑦) = (𝐺‘(𝐻𝑥)))
1614, 15oveq12d 7427 . . 3 (𝑦 = (𝐻𝑥) → ((𝐹𝑦)𝑅(𝐺𝑦)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
173, 11, 13, 16fmptco 7127 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
18 ovex 7442 . . . . . . . 8 ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
1918rgenw 3066 . . . . . . 7 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
20 eqid 2733 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
2120fnmpt 6691 . . . . . . 7 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))
2219, 21mp1i 13 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))
23 offval3 7969 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
2423adantr 482 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
2524fneq1d 6643 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺) ↔ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺)))
2622, 25mpbird 257 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺))
2726fndmd 6655 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → dom (𝐹f 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺))
28 eqimss 4041 . . . 4 (dom (𝐹f 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺) → dom (𝐹f 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺))
29 cores2 6259 . . . 4 (dom (𝐹f 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ 𝐻))
3027, 28, 293syl 18 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ 𝐻))
31 funcnvres2 6629 . . . . 5 (Fun 𝐻(𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
321, 31syl 17 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
3332coeq2d 5863 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))))
3430, 33eqtr3d 2775 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))))
35 simpr2 1196 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹𝐻) ∈ V)
36 simpr3 1197 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐺𝐻) ∈ V)
37 offval3 7969 . . . 4 (((𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))))
3835, 36, 37syl2anc 585 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))))
39 dmco 6254 . . . . . 6 dom (𝐹𝐻) = (𝐻 “ dom 𝐹)
40 dmco 6254 . . . . . 6 dom (𝐺𝐻) = (𝐻 “ dom 𝐺)
4139, 40ineq12i 4211 . . . . 5 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺))
42 inpreima 7066 . . . . . 6 (Fun 𝐻 → (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺)))
431, 42syl 17 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺)))
4441, 43eqtr4id 2792 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) = (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))
45 simplr1 1216 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → Fun 𝐻)
46 inss2 4230 . . . . . . . . 9 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom (𝐺𝐻)
47 dmcoss 5971 . . . . . . . . 9 dom (𝐺𝐻) ⊆ dom 𝐻
4846, 47sstri 3992 . . . . . . . 8 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻
4948a1i 11 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻)
5049sselda 3983 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → 𝑥 ∈ dom 𝐻)
51 fvco 6990 . . . . . 6 ((Fun 𝐻𝑥 ∈ dom 𝐻) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
5245, 50, 51syl2anc 585 . . . . 5 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
53 inss1 4229 . . . . . . . . 9 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom (𝐹𝐻)
54 dmcoss 5971 . . . . . . . . 9 dom (𝐹𝐻) ⊆ dom 𝐻
5553, 54sstri 3992 . . . . . . . 8 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻
5655a1i 11 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻)
5756sselda 3983 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → 𝑥 ∈ dom 𝐻)
58 fvco 6990 . . . . . 6 ((Fun 𝐻𝑥 ∈ dom 𝐻) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
5945, 57, 58syl2anc 585 . . . . 5 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
6052, 59oveq12d 7427 . . . 4 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
6144, 60mpteq12dva 5238 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
6238, 61eqtrd 2773 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
6317, 34, 623eqtr4d 2783 1 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cin 3948  wss 3949  cmpt 5232  ccnv 5676  dom cdm 5677  cres 5679  cima 5680  ccom 5681  Fun wfun 6538   Fn wfn 6539  cfv 6544  (class class class)co 7409  f cof 7668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670
This theorem is referenced by:  oftpos  21954
  Copyright terms: Public domain W3C validator