MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofco2 Structured version   Visualization version   GIF version

Theorem ofco2 22336
Description: Distribution law for the function operation and the composition of functions. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Assertion
Ref Expression
ofco2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))

Proof of Theorem ofco2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → Fun 𝐻)
2 fvimacnvi 6986 . . . 4 ((Fun 𝐻𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻𝑥) ∈ (dom 𝐹 ∩ dom 𝐺))
31, 2sylan 580 . . 3 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻𝑥) ∈ (dom 𝐹 ∩ dom 𝐺))
41funfnd 6513 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → 𝐻 Fn dom 𝐻)
5 dffn5 6881 . . . . . 6 (𝐻 Fn dom 𝐻𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)))
64, 5sylib 218 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → 𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)))
76reseq1d 5929 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
8 cnvimass 6033 . . . . 5 (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻
9 resmpt 5988 . . . . 5 ((𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻 → ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥)))
108, 9ax-mp 5 . . . 4 ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥))
117, 10eqtrdi 2780 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥)))
12 offval3 7917 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
1312adantr 480 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
14 fveq2 6822 . . . 4 (𝑦 = (𝐻𝑥) → (𝐹𝑦) = (𝐹‘(𝐻𝑥)))
15 fveq2 6822 . . . 4 (𝑦 = (𝐻𝑥) → (𝐺𝑦) = (𝐺‘(𝐻𝑥)))
1614, 15oveq12d 7367 . . 3 (𝑦 = (𝐻𝑥) → ((𝐹𝑦)𝑅(𝐺𝑦)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
173, 11, 13, 16fmptco 7063 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
18 ovex 7382 . . . . . . . 8 ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
1918rgenw 3048 . . . . . . 7 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
20 eqid 2729 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
2120fnmpt 6622 . . . . . . 7 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))
2219, 21mp1i 13 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))
23 offval3 7917 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
2423adantr 480 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
2524fneq1d 6575 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺) ↔ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺)))
2622, 25mpbird 257 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺))
2726fndmd 6587 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → dom (𝐹f 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺))
28 eqimss 3994 . . . 4 (dom (𝐹f 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺) → dom (𝐹f 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺))
29 cores2 6208 . . . 4 (dom (𝐹f 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ 𝐻))
3027, 28, 293syl 18 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ 𝐻))
31 funcnvres2 6562 . . . . 5 (Fun 𝐻(𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
321, 31syl 17 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
3332coeq2d 5805 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))))
3430, 33eqtr3d 2766 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))))
35 simpr2 1196 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹𝐻) ∈ V)
36 simpr3 1197 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐺𝐻) ∈ V)
37 offval3 7917 . . . 4 (((𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))))
3835, 36, 37syl2anc 584 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))))
39 dmco 6203 . . . . . 6 dom (𝐹𝐻) = (𝐻 “ dom 𝐹)
40 dmco 6203 . . . . . 6 dom (𝐺𝐻) = (𝐻 “ dom 𝐺)
4139, 40ineq12i 4169 . . . . 5 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺))
42 inpreima 6998 . . . . . 6 (Fun 𝐻 → (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺)))
431, 42syl 17 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺)))
4441, 43eqtr4id 2783 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) = (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))
45 simplr1 1216 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → Fun 𝐻)
46 inss2 4189 . . . . . . . . 9 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom (𝐺𝐻)
47 dmcoss 5916 . . . . . . . . 9 dom (𝐺𝐻) ⊆ dom 𝐻
4846, 47sstri 3945 . . . . . . . 8 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻
4948a1i 11 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻)
5049sselda 3935 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → 𝑥 ∈ dom 𝐻)
51 fvco 6921 . . . . . 6 ((Fun 𝐻𝑥 ∈ dom 𝐻) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
5245, 50, 51syl2anc 584 . . . . 5 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
53 inss1 4188 . . . . . . . . 9 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom (𝐹𝐻)
54 dmcoss 5916 . . . . . . . . 9 dom (𝐹𝐻) ⊆ dom 𝐻
5553, 54sstri 3945 . . . . . . . 8 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻
5655a1i 11 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻)
5756sselda 3935 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → 𝑥 ∈ dom 𝐻)
58 fvco 6921 . . . . . 6 ((Fun 𝐻𝑥 ∈ dom 𝐻) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
5945, 57, 58syl2anc 584 . . . . 5 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
6052, 59oveq12d 7367 . . . 4 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
6144, 60mpteq12dva 5178 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
6238, 61eqtrd 2764 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
6317, 34, 623eqtr4d 2774 1 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  cin 3902  wss 3903  cmpt 5173  ccnv 5618  dom cdm 5619  cres 5621  cima 5622  ccom 5623  Fun wfun 6476   Fn wfn 6477  cfv 6482  (class class class)co 7349  f cof 7611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613
This theorem is referenced by:  oftpos  22337
  Copyright terms: Public domain W3C validator