MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofco2 Structured version   Visualization version   GIF version

Theorem ofco2 22478
Description: Distribution law for the function operation and the composition of functions. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Assertion
Ref Expression
ofco2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))

Proof of Theorem ofco2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1194 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → Fun 𝐻)
2 fvimacnvi 7085 . . . 4 ((Fun 𝐻𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻𝑥) ∈ (dom 𝐹 ∩ dom 𝐺))
31, 2sylan 579 . . 3 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻𝑥) ∈ (dom 𝐹 ∩ dom 𝐺))
41funfnd 6609 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → 𝐻 Fn dom 𝐻)
5 dffn5 6980 . . . . . 6 (𝐻 Fn dom 𝐻𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)))
64, 5sylib 218 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → 𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)))
76reseq1d 6008 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
8 cnvimass 6111 . . . . 5 (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻
9 resmpt 6066 . . . . 5 ((𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻 → ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥)))
108, 9ax-mp 5 . . . 4 ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥))
117, 10eqtrdi 2796 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥)))
12 offval3 8023 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
1312adantr 480 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
14 fveq2 6920 . . . 4 (𝑦 = (𝐻𝑥) → (𝐹𝑦) = (𝐹‘(𝐻𝑥)))
15 fveq2 6920 . . . 4 (𝑦 = (𝐻𝑥) → (𝐺𝑦) = (𝐺‘(𝐻𝑥)))
1614, 15oveq12d 7466 . . 3 (𝑦 = (𝐻𝑥) → ((𝐹𝑦)𝑅(𝐺𝑦)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
173, 11, 13, 16fmptco 7163 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
18 ovex 7481 . . . . . . . 8 ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
1918rgenw 3071 . . . . . . 7 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
20 eqid 2740 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
2120fnmpt 6720 . . . . . . 7 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))
2219, 21mp1i 13 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))
23 offval3 8023 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
2423adantr 480 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
2524fneq1d 6672 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺) ↔ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺)))
2622, 25mpbird 257 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺))
2726fndmd 6684 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → dom (𝐹f 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺))
28 eqimss 4067 . . . 4 (dom (𝐹f 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺) → dom (𝐹f 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺))
29 cores2 6290 . . . 4 (dom (𝐹f 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ 𝐻))
3027, 28, 293syl 18 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ 𝐻))
31 funcnvres2 6658 . . . . 5 (Fun 𝐻(𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
321, 31syl 17 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
3332coeq2d 5887 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))))
3430, 33eqtr3d 2782 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))))
35 simpr2 1195 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹𝐻) ∈ V)
36 simpr3 1196 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐺𝐻) ∈ V)
37 offval3 8023 . . . 4 (((𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))))
3835, 36, 37syl2anc 583 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))))
39 dmco 6285 . . . . . 6 dom (𝐹𝐻) = (𝐻 “ dom 𝐹)
40 dmco 6285 . . . . . 6 dom (𝐺𝐻) = (𝐻 “ dom 𝐺)
4139, 40ineq12i 4239 . . . . 5 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺))
42 inpreima 7097 . . . . . 6 (Fun 𝐻 → (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺)))
431, 42syl 17 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺)))
4441, 43eqtr4id 2799 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) = (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))
45 simplr1 1215 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → Fun 𝐻)
46 inss2 4259 . . . . . . . . 9 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom (𝐺𝐻)
47 dmcoss 5997 . . . . . . . . 9 dom (𝐺𝐻) ⊆ dom 𝐻
4846, 47sstri 4018 . . . . . . . 8 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻
4948a1i 11 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻)
5049sselda 4008 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → 𝑥 ∈ dom 𝐻)
51 fvco 7020 . . . . . 6 ((Fun 𝐻𝑥 ∈ dom 𝐻) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
5245, 50, 51syl2anc 583 . . . . 5 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
53 inss1 4258 . . . . . . . . 9 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom (𝐹𝐻)
54 dmcoss 5997 . . . . . . . . 9 dom (𝐹𝐻) ⊆ dom 𝐻
5553, 54sstri 4018 . . . . . . . 8 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻
5655a1i 11 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻)
5756sselda 4008 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → 𝑥 ∈ dom 𝐻)
58 fvco 7020 . . . . . 6 ((Fun 𝐻𝑥 ∈ dom 𝐻) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
5945, 57, 58syl2anc 583 . . . . 5 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
6052, 59oveq12d 7466 . . . 4 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
6144, 60mpteq12dva 5255 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
6238, 61eqtrd 2780 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
6317, 34, 623eqtr4d 2790 1 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  cmpt 5249  ccnv 5699  dom cdm 5700  cres 5702  cima 5703  ccom 5704  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  oftpos  22479
  Copyright terms: Public domain W3C validator