MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofco2 Structured version   Visualization version   GIF version

Theorem ofco2 22366
Description: Distribution law for the function operation and the composition of functions. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Assertion
Ref Expression
ofco2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))

Proof of Theorem ofco2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → Fun 𝐻)
2 fvimacnvi 6985 . . . 4 ((Fun 𝐻𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻𝑥) ∈ (dom 𝐹 ∩ dom 𝐺))
31, 2sylan 580 . . 3 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) → (𝐻𝑥) ∈ (dom 𝐹 ∩ dom 𝐺))
41funfnd 6512 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → 𝐻 Fn dom 𝐻)
5 dffn5 6880 . . . . . 6 (𝐻 Fn dom 𝐻𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)))
64, 5sylib 218 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → 𝐻 = (𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)))
76reseq1d 5926 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
8 cnvimass 6030 . . . . 5 (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻
9 resmpt 5985 . . . . 5 ((𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ⊆ dom 𝐻 → ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥)))
108, 9ax-mp 5 . . . 4 ((𝑥 ∈ dom 𝐻 ↦ (𝐻𝑥)) ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥))
117, 10eqtrdi 2782 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ (𝐻𝑥)))
12 offval3 7914 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
1312adantr 480 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) = (𝑦 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
14 fveq2 6822 . . . 4 (𝑦 = (𝐻𝑥) → (𝐹𝑦) = (𝐹‘(𝐻𝑥)))
15 fveq2 6822 . . . 4 (𝑦 = (𝐻𝑥) → (𝐺𝑦) = (𝐺‘(𝐻𝑥)))
1614, 15oveq12d 7364 . . 3 (𝑦 = (𝐻𝑥) → ((𝐹𝑦)𝑅(𝐺𝑦)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
173, 11, 13, 16fmptco 7062 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
18 ovex 7379 . . . . . . . 8 ((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
1918rgenw 3051 . . . . . . 7 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V
20 eqid 2731 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥)))
2120fnmpt 6621 . . . . . . 7 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥)𝑅(𝐺𝑥)) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))
2219, 21mp1i 13 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺))
23 offval3 7914 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
2423adantr 480 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
2524fneq1d 6574 . . . . . 6 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺) ↔ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) Fn (dom 𝐹 ∩ dom 𝐺)))
2622, 25mpbird 257 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹f 𝑅𝐺) Fn (dom 𝐹 ∩ dom 𝐺))
2726fndmd 6586 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → dom (𝐹f 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺))
28 eqimss 3988 . . . 4 (dom (𝐹f 𝑅𝐺) = (dom 𝐹 ∩ dom 𝐺) → dom (𝐹f 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺))
29 cores2 6207 . . . 4 (dom (𝐹f 𝑅𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ 𝐻))
3027, 28, 293syl 18 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ 𝐻))
31 funcnvres2 6561 . . . . 5 (Fun 𝐻(𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
321, 31syl 17 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺))))
3332coeq2d 5801 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (dom 𝐹 ∩ dom 𝐺))) = ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))))
3430, 33eqtr3d 2768 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹f 𝑅𝐺) ∘ (𝐻 ↾ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))))
35 simpr2 1196 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐹𝐻) ∈ V)
36 simpr3 1197 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐺𝐻) ∈ V)
37 offval3 7914 . . . 4 (((𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))))
3835, 36, 37syl2anc 584 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))))
39 dmco 6202 . . . . . 6 dom (𝐹𝐻) = (𝐻 “ dom 𝐹)
40 dmco 6202 . . . . . 6 dom (𝐺𝐻) = (𝐻 “ dom 𝐺)
4139, 40ineq12i 4165 . . . . 5 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺))
42 inpreima 6997 . . . . . 6 (Fun 𝐻 → (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺)))
431, 42syl 17 . . . . 5 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) = ((𝐻 “ dom 𝐹) ∩ (𝐻 “ dom 𝐺)))
4441, 43eqtr4id 2785 . . . 4 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) = (𝐻 “ (dom 𝐹 ∩ dom 𝐺)))
45 simplr1 1216 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → Fun 𝐻)
46 inss2 4185 . . . . . . . . 9 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom (𝐺𝐻)
47 dmcoss 5913 . . . . . . . . 9 dom (𝐺𝐻) ⊆ dom 𝐻
4846, 47sstri 3939 . . . . . . . 8 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻
4948a1i 11 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻)
5049sselda 3929 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → 𝑥 ∈ dom 𝐻)
51 fvco 6920 . . . . . 6 ((Fun 𝐻𝑥 ∈ dom 𝐻) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
5245, 50, 51syl2anc 584 . . . . 5 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
53 inss1 4184 . . . . . . . . 9 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom (𝐹𝐻)
54 dmcoss 5913 . . . . . . . . 9 dom (𝐹𝐻) ⊆ dom 𝐻
5553, 54sstri 3939 . . . . . . . 8 (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻
5655a1i 11 . . . . . . 7 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ⊆ dom 𝐻)
5756sselda 3929 . . . . . 6 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → 𝑥 ∈ dom 𝐻)
58 fvco 6920 . . . . . 6 ((Fun 𝐻𝑥 ∈ dom 𝐻) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
5945, 57, 58syl2anc 584 . . . . 5 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
6052, 59oveq12d 7364 . . . 4 ((((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) ∧ 𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻))) → (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
6144, 60mpteq12dva 5175 . . 3 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → (𝑥 ∈ (dom (𝐹𝐻) ∩ dom (𝐺𝐻)) ↦ (((𝐹𝐻)‘𝑥)𝑅((𝐺𝐻)‘𝑥))) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
6238, 61eqtrd 2766 . 2 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥 ∈ (𝐻 “ (dom 𝐹 ∩ dom 𝐺)) ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
6317, 34, 623eqtr4d 2776 1 (((𝐹 ∈ V ∧ 𝐺 ∈ V) ∧ (Fun 𝐻 ∧ (𝐹𝐻) ∈ V ∧ (𝐺𝐻) ∈ V)) → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3896  wss 3897  cmpt 5170  ccnv 5613  dom cdm 5614  cres 5616  cima 5617  ccom 5618  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  f cof 7608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610
This theorem is referenced by:  oftpos  22367
  Copyright terms: Public domain W3C validator