Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjvlem Structured version   Visualization version   GIF version

Theorem cycpmconjvlem 31310
Description: Lemma for cycpmconjv 31311. (Contributed by Thierry Arnoux, 9-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjvlem.f (𝜑𝐹:𝐷1-1-onto𝐷)
cycpmconjvlem.b (𝜑𝐵𝐷)
Assertion
Ref Expression
cycpmconjvlem (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ 𝐹) = ( I ↾ (𝐷 ∖ ran (𝐹𝐵))))

Proof of Theorem cycpmconjvlem
StepHypRef Expression
1 cycpmconjvlem.f . . . 4 (𝜑𝐹:𝐷1-1-onto𝐷)
2 f1ofun 6702 . . . 4 (𝐹:𝐷1-1-onto𝐷 → Fun 𝐹)
31, 2syl 17 . . 3 (𝜑 → Fun 𝐹)
4 funrel 6435 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
5 dfrel2 6081 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
64, 5sylib 217 . . . . . 6 (Fun 𝐹𝐹 = 𝐹)
76reseq1d 5879 . . . . 5 (Fun 𝐹 → (𝐹 ↾ (𝐷𝐵)) = (𝐹 ↾ (𝐷𝐵)))
87cnveqd 5773 . . . 4 (Fun 𝐹(𝐹 ↾ (𝐷𝐵)) = (𝐹 ↾ (𝐷𝐵)))
98coeq2d 5760 . . 3 (Fun 𝐹 → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))))
103, 9syl 17 . 2 (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))))
11 difssd 4063 . . . . . 6 (𝜑 → (𝐷𝐵) ⊆ 𝐷)
12 f1odm 6704 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷 → dom 𝐹 = 𝐷)
131, 12syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐷)
1411, 13sseqtrrd 3958 . . . . 5 (𝜑 → (𝐷𝐵) ⊆ dom 𝐹)
15 ssdmres 5903 . . . . 5 ((𝐷𝐵) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐷𝐵)) = (𝐷𝐵))
1614, 15sylib 217 . . . 4 (𝜑 → dom (𝐹 ↾ (𝐷𝐵)) = (𝐷𝐵))
17 ssidd 3940 . . . 4 (𝜑 → (𝐷𝐵) ⊆ (𝐷𝐵))
1816, 17eqsstrd 3955 . . 3 (𝜑 → dom (𝐹 ↾ (𝐷𝐵)) ⊆ (𝐷𝐵))
19 cores2 6152 . . 3 (dom (𝐹 ↾ (𝐷𝐵)) ⊆ (𝐷𝐵) → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ((𝐹 ↾ (𝐷𝐵)) ∘ 𝐹))
2018, 19syl 17 . 2 (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ((𝐹 ↾ (𝐷𝐵)) ∘ 𝐹))
21 f1ocnv 6712 . . . . . 6 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷)
22 f1ofun 6702 . . . . . 6 (𝐹:𝐷1-1-onto𝐷 → Fun 𝐹)
231, 21, 223syl 18 . . . . 5 (𝜑 → Fun 𝐹)
24 ssidd 3940 . . . . . . . 8 (𝜑𝐷𝐷)
2524, 13sseqtrrd 3958 . . . . . . 7 (𝜑𝐷 ⊆ dom 𝐹)
26 fores 6682 . . . . . . 7 ((Fun 𝐹𝐷 ⊆ dom 𝐹) → (𝐹𝐷):𝐷onto→(𝐹𝐷))
273, 25, 26syl2anc 583 . . . . . 6 (𝜑 → (𝐹𝐷):𝐷onto→(𝐹𝐷))
28 df-ima 5593 . . . . . . 7 (𝐹𝐷) = ran (𝐹𝐷)
29 foeq3 6670 . . . . . . 7 ((𝐹𝐷) = ran (𝐹𝐷) → ((𝐹𝐷):𝐷onto→(𝐹𝐷) ↔ (𝐹𝐷):𝐷onto→ran (𝐹𝐷)))
3028, 29ax-mp 5 . . . . . 6 ((𝐹𝐷):𝐷onto→(𝐹𝐷) ↔ (𝐹𝐷):𝐷onto→ran (𝐹𝐷))
3127, 30sylib 217 . . . . 5 (𝜑 → (𝐹𝐷):𝐷onto→ran (𝐹𝐷))
32 cycpmconjvlem.b . . . . . . . 8 (𝜑𝐵𝐷)
3332, 13sseqtrrd 3958 . . . . . . 7 (𝜑𝐵 ⊆ dom 𝐹)
34 fores 6682 . . . . . . 7 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵):𝐵onto→(𝐹𝐵))
353, 33, 34syl2anc 583 . . . . . 6 (𝜑 → (𝐹𝐵):𝐵onto→(𝐹𝐵))
36 df-ima 5593 . . . . . . 7 (𝐹𝐵) = ran (𝐹𝐵)
37 foeq3 6670 . . . . . . 7 ((𝐹𝐵) = ran (𝐹𝐵) → ((𝐹𝐵):𝐵onto→(𝐹𝐵) ↔ (𝐹𝐵):𝐵onto→ran (𝐹𝐵)))
3836, 37ax-mp 5 . . . . . 6 ((𝐹𝐵):𝐵onto→(𝐹𝐵) ↔ (𝐹𝐵):𝐵onto→ran (𝐹𝐵))
3935, 38sylib 217 . . . . 5 (𝜑 → (𝐹𝐵):𝐵onto→ran (𝐹𝐵))
40 resdif 6720 . . . . 5 ((Fun 𝐹 ∧ (𝐹𝐷):𝐷onto→ran (𝐹𝐷) ∧ (𝐹𝐵):𝐵onto→ran (𝐹𝐵)) → (𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(ran (𝐹𝐷) ∖ ran (𝐹𝐵)))
4123, 31, 39, 40syl3anc 1369 . . . 4 (𝜑 → (𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(ran (𝐹𝐷) ∖ ran (𝐹𝐵)))
42 f1ofn 6701 . . . . . . . . 9 (𝐹:𝐷1-1-onto𝐷𝐹 Fn 𝐷)
43 fnresdm 6535 . . . . . . . . 9 (𝐹 Fn 𝐷 → (𝐹𝐷) = 𝐹)
441, 42, 433syl 18 . . . . . . . 8 (𝜑 → (𝐹𝐷) = 𝐹)
4544rneqd 5836 . . . . . . 7 (𝜑 → ran (𝐹𝐷) = ran 𝐹)
46 f1ofo 6707 . . . . . . . 8 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷onto𝐷)
47 forn 6675 . . . . . . . 8 (𝐹:𝐷onto𝐷 → ran 𝐹 = 𝐷)
481, 46, 473syl 18 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐷)
4945, 48eqtrd 2778 . . . . . 6 (𝜑 → ran (𝐹𝐷) = 𝐷)
5049difeq1d 4052 . . . . 5 (𝜑 → (ran (𝐹𝐷) ∖ ran (𝐹𝐵)) = (𝐷 ∖ ran (𝐹𝐵)))
5150f1oeq3d 6697 . . . 4 (𝜑 → ((𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(ran (𝐹𝐷) ∖ ran (𝐹𝐵)) ↔ (𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(𝐷 ∖ ran (𝐹𝐵))))
5241, 51mpbid 231 . . 3 (𝜑 → (𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(𝐷 ∖ ran (𝐹𝐵)))
53 f1ococnv2 6726 . . 3 ((𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(𝐷 ∖ ran (𝐹𝐵)) → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ( I ↾ (𝐷 ∖ ran (𝐹𝐵))))
5452, 53syl 17 . 2 (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ( I ↾ (𝐷 ∖ ran (𝐹𝐵))))
5510, 20, 543eqtr3d 2786 1 (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ 𝐹) = ( I ↾ (𝐷 ∖ ran (𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  cdif 3880  wss 3883   I cid 5479  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  ccom 5584  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413  ontowfo 6416  1-1-ontowf1o 6417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425
This theorem is referenced by:  cycpmconjv  31311
  Copyright terms: Public domain W3C validator