Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmconjvlem Structured version   Visualization version   GIF version

Theorem cycpmconjvlem 33098
Description: Lemma for cycpmconjv 33099. (Contributed by Thierry Arnoux, 9-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjvlem.f (𝜑𝐹:𝐷1-1-onto𝐷)
cycpmconjvlem.b (𝜑𝐵𝐷)
Assertion
Ref Expression
cycpmconjvlem (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ 𝐹) = ( I ↾ (𝐷 ∖ ran (𝐹𝐵))))

Proof of Theorem cycpmconjvlem
StepHypRef Expression
1 cycpmconjvlem.f . . . 4 (𝜑𝐹:𝐷1-1-onto𝐷)
2 f1ofun 6802 . . . 4 (𝐹:𝐷1-1-onto𝐷 → Fun 𝐹)
31, 2syl 17 . . 3 (𝜑 → Fun 𝐹)
4 funrel 6533 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
5 dfrel2 6162 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
64, 5sylib 218 . . . . . 6 (Fun 𝐹𝐹 = 𝐹)
76reseq1d 5949 . . . . 5 (Fun 𝐹 → (𝐹 ↾ (𝐷𝐵)) = (𝐹 ↾ (𝐷𝐵)))
87cnveqd 5839 . . . 4 (Fun 𝐹(𝐹 ↾ (𝐷𝐵)) = (𝐹 ↾ (𝐷𝐵)))
98coeq2d 5826 . . 3 (Fun 𝐹 → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))))
103, 9syl 17 . 2 (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))))
11 difssd 4100 . . . . . 6 (𝜑 → (𝐷𝐵) ⊆ 𝐷)
12 f1odm 6804 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷 → dom 𝐹 = 𝐷)
131, 12syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐷)
1411, 13sseqtrrd 3984 . . . . 5 (𝜑 → (𝐷𝐵) ⊆ dom 𝐹)
15 ssdmres 5984 . . . . 5 ((𝐷𝐵) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐷𝐵)) = (𝐷𝐵))
1614, 15sylib 218 . . . 4 (𝜑 → dom (𝐹 ↾ (𝐷𝐵)) = (𝐷𝐵))
17 ssidd 3970 . . . 4 (𝜑 → (𝐷𝐵) ⊆ (𝐷𝐵))
1816, 17eqsstrd 3981 . . 3 (𝜑 → dom (𝐹 ↾ (𝐷𝐵)) ⊆ (𝐷𝐵))
19 cores2 6232 . . 3 (dom (𝐹 ↾ (𝐷𝐵)) ⊆ (𝐷𝐵) → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ((𝐹 ↾ (𝐷𝐵)) ∘ 𝐹))
2018, 19syl 17 . 2 (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ((𝐹 ↾ (𝐷𝐵)) ∘ 𝐹))
21 f1ocnv 6812 . . . . . 6 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷)
22 f1ofun 6802 . . . . . 6 (𝐹:𝐷1-1-onto𝐷 → Fun 𝐹)
231, 21, 223syl 18 . . . . 5 (𝜑 → Fun 𝐹)
24 ssidd 3970 . . . . . . . 8 (𝜑𝐷𝐷)
2524, 13sseqtrrd 3984 . . . . . . 7 (𝜑𝐷 ⊆ dom 𝐹)
26 fores 6782 . . . . . . 7 ((Fun 𝐹𝐷 ⊆ dom 𝐹) → (𝐹𝐷):𝐷onto→(𝐹𝐷))
273, 25, 26syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝐷):𝐷onto→(𝐹𝐷))
28 df-ima 5651 . . . . . . 7 (𝐹𝐷) = ran (𝐹𝐷)
29 foeq3 6770 . . . . . . 7 ((𝐹𝐷) = ran (𝐹𝐷) → ((𝐹𝐷):𝐷onto→(𝐹𝐷) ↔ (𝐹𝐷):𝐷onto→ran (𝐹𝐷)))
3028, 29ax-mp 5 . . . . . 6 ((𝐹𝐷):𝐷onto→(𝐹𝐷) ↔ (𝐹𝐷):𝐷onto→ran (𝐹𝐷))
3127, 30sylib 218 . . . . 5 (𝜑 → (𝐹𝐷):𝐷onto→ran (𝐹𝐷))
32 cycpmconjvlem.b . . . . . . . 8 (𝜑𝐵𝐷)
3332, 13sseqtrrd 3984 . . . . . . 7 (𝜑𝐵 ⊆ dom 𝐹)
34 fores 6782 . . . . . . 7 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵):𝐵onto→(𝐹𝐵))
353, 33, 34syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝐵):𝐵onto→(𝐹𝐵))
36 df-ima 5651 . . . . . . 7 (𝐹𝐵) = ran (𝐹𝐵)
37 foeq3 6770 . . . . . . 7 ((𝐹𝐵) = ran (𝐹𝐵) → ((𝐹𝐵):𝐵onto→(𝐹𝐵) ↔ (𝐹𝐵):𝐵onto→ran (𝐹𝐵)))
3836, 37ax-mp 5 . . . . . 6 ((𝐹𝐵):𝐵onto→(𝐹𝐵) ↔ (𝐹𝐵):𝐵onto→ran (𝐹𝐵))
3935, 38sylib 218 . . . . 5 (𝜑 → (𝐹𝐵):𝐵onto→ran (𝐹𝐵))
40 resdif 6821 . . . . 5 ((Fun 𝐹 ∧ (𝐹𝐷):𝐷onto→ran (𝐹𝐷) ∧ (𝐹𝐵):𝐵onto→ran (𝐹𝐵)) → (𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(ran (𝐹𝐷) ∖ ran (𝐹𝐵)))
4123, 31, 39, 40syl3anc 1373 . . . 4 (𝜑 → (𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(ran (𝐹𝐷) ∖ ran (𝐹𝐵)))
42 f1ofn 6801 . . . . . . . . 9 (𝐹:𝐷1-1-onto𝐷𝐹 Fn 𝐷)
43 fnresdm 6637 . . . . . . . . 9 (𝐹 Fn 𝐷 → (𝐹𝐷) = 𝐹)
441, 42, 433syl 18 . . . . . . . 8 (𝜑 → (𝐹𝐷) = 𝐹)
4544rneqd 5902 . . . . . . 7 (𝜑 → ran (𝐹𝐷) = ran 𝐹)
46 f1ofo 6807 . . . . . . . 8 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷onto𝐷)
47 forn 6775 . . . . . . . 8 (𝐹:𝐷onto𝐷 → ran 𝐹 = 𝐷)
481, 46, 473syl 18 . . . . . . 7 (𝜑 → ran 𝐹 = 𝐷)
4945, 48eqtrd 2764 . . . . . 6 (𝜑 → ran (𝐹𝐷) = 𝐷)
5049difeq1d 4088 . . . . 5 (𝜑 → (ran (𝐹𝐷) ∖ ran (𝐹𝐵)) = (𝐷 ∖ ran (𝐹𝐵)))
5150f1oeq3d 6797 . . . 4 (𝜑 → ((𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(ran (𝐹𝐷) ∖ ran (𝐹𝐵)) ↔ (𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(𝐷 ∖ ran (𝐹𝐵))))
5241, 51mpbid 232 . . 3 (𝜑 → (𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(𝐷 ∖ ran (𝐹𝐵)))
53 f1ococnv2 6827 . . 3 ((𝐹 ↾ (𝐷𝐵)):(𝐷𝐵)–1-1-onto→(𝐷 ∖ ran (𝐹𝐵)) → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ( I ↾ (𝐷 ∖ ran (𝐹𝐵))))
5452, 53syl 17 . 2 (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ (𝐹 ↾ (𝐷𝐵))) = ( I ↾ (𝐷 ∖ ran (𝐹𝐵))))
5510, 20, 543eqtr3d 2772 1 (𝜑 → ((𝐹 ↾ (𝐷𝐵)) ∘ 𝐹) = ( I ↾ (𝐷 ∖ ran (𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  cdif 3911  wss 3914   I cid 5532  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  ccom 5642  Rel wrel 5643  Fun wfun 6505   Fn wfn 6506  ontowfo 6509  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  cycpmconjv  33099
  Copyright terms: Public domain W3C validator