Proof of Theorem cycpmconjvlem
Step | Hyp | Ref
| Expression |
1 | | cycpmconjvlem.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐷) |
2 | | f1ofun 6702 |
. . . 4
⊢ (𝐹:𝐷–1-1-onto→𝐷 → Fun 𝐹) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → Fun 𝐹) |
4 | | funrel 6435 |
. . . . . . 7
⊢ (Fun
𝐹 → Rel 𝐹) |
5 | | dfrel2 6081 |
. . . . . . 7
⊢ (Rel
𝐹 ↔ ◡◡𝐹 = 𝐹) |
6 | 4, 5 | sylib 217 |
. . . . . 6
⊢ (Fun
𝐹 → ◡◡𝐹 = 𝐹) |
7 | 6 | reseq1d 5879 |
. . . . 5
⊢ (Fun
𝐹 → (◡◡𝐹 ↾ (𝐷 ∖ 𝐵)) = (𝐹 ↾ (𝐷 ∖ 𝐵))) |
8 | 7 | cnveqd 5773 |
. . . 4
⊢ (Fun
𝐹 → ◡(◡◡𝐹 ↾ (𝐷 ∖ 𝐵)) = ◡(𝐹 ↾ (𝐷 ∖ 𝐵))) |
9 | 8 | coeq2d 5760 |
. . 3
⊢ (Fun
𝐹 → ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡(◡◡𝐹 ↾ (𝐷 ∖ 𝐵))) = ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡(𝐹 ↾ (𝐷 ∖ 𝐵)))) |
10 | 3, 9 | syl 17 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡(◡◡𝐹 ↾ (𝐷 ∖ 𝐵))) = ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡(𝐹 ↾ (𝐷 ∖ 𝐵)))) |
11 | | difssd 4063 |
. . . . . 6
⊢ (𝜑 → (𝐷 ∖ 𝐵) ⊆ 𝐷) |
12 | | f1odm 6704 |
. . . . . . 7
⊢ (𝐹:𝐷–1-1-onto→𝐷 → dom 𝐹 = 𝐷) |
13 | 1, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 𝐹 = 𝐷) |
14 | 11, 13 | sseqtrrd 3958 |
. . . . 5
⊢ (𝜑 → (𝐷 ∖ 𝐵) ⊆ dom 𝐹) |
15 | | ssdmres 5903 |
. . . . 5
⊢ ((𝐷 ∖ 𝐵) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐷 ∖ 𝐵)) = (𝐷 ∖ 𝐵)) |
16 | 14, 15 | sylib 217 |
. . . 4
⊢ (𝜑 → dom (𝐹 ↾ (𝐷 ∖ 𝐵)) = (𝐷 ∖ 𝐵)) |
17 | | ssidd 3940 |
. . . 4
⊢ (𝜑 → (𝐷 ∖ 𝐵) ⊆ (𝐷 ∖ 𝐵)) |
18 | 16, 17 | eqsstrd 3955 |
. . 3
⊢ (𝜑 → dom (𝐹 ↾ (𝐷 ∖ 𝐵)) ⊆ (𝐷 ∖ 𝐵)) |
19 | | cores2 6152 |
. . 3
⊢ (dom
(𝐹 ↾ (𝐷 ∖ 𝐵)) ⊆ (𝐷 ∖ 𝐵) → ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡(◡◡𝐹 ↾ (𝐷 ∖ 𝐵))) = ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡𝐹)) |
20 | 18, 19 | syl 17 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡(◡◡𝐹 ↾ (𝐷 ∖ 𝐵))) = ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡𝐹)) |
21 | | f1ocnv 6712 |
. . . . . 6
⊢ (𝐹:𝐷–1-1-onto→𝐷 → ◡𝐹:𝐷–1-1-onto→𝐷) |
22 | | f1ofun 6702 |
. . . . . 6
⊢ (◡𝐹:𝐷–1-1-onto→𝐷 → Fun ◡𝐹) |
23 | 1, 21, 22 | 3syl 18 |
. . . . 5
⊢ (𝜑 → Fun ◡𝐹) |
24 | | ssidd 3940 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ⊆ 𝐷) |
25 | 24, 13 | sseqtrrd 3958 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
26 | | fores 6682 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐷 ⊆ dom 𝐹) → (𝐹 ↾ 𝐷):𝐷–onto→(𝐹 “ 𝐷)) |
27 | 3, 25, 26 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→(𝐹 “ 𝐷)) |
28 | | df-ima 5593 |
. . . . . . 7
⊢ (𝐹 “ 𝐷) = ran (𝐹 ↾ 𝐷) |
29 | | foeq3 6670 |
. . . . . . 7
⊢ ((𝐹 “ 𝐷) = ran (𝐹 ↾ 𝐷) → ((𝐹 ↾ 𝐷):𝐷–onto→(𝐹 “ 𝐷) ↔ (𝐹 ↾ 𝐷):𝐷–onto→ran (𝐹 ↾ 𝐷))) |
30 | 28, 29 | ax-mp 5 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐷):𝐷–onto→(𝐹 “ 𝐷) ↔ (𝐹 ↾ 𝐷):𝐷–onto→ran (𝐹 ↾ 𝐷)) |
31 | 27, 30 | sylib 217 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→ran (𝐹 ↾ 𝐷)) |
32 | | cycpmconjvlem.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆ 𝐷) |
33 | 32, 13 | sseqtrrd 3958 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ dom 𝐹) |
34 | | fores 6682 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ dom 𝐹) → (𝐹 ↾ 𝐵):𝐵–onto→(𝐹 “ 𝐵)) |
35 | 3, 33, 34 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵–onto→(𝐹 “ 𝐵)) |
36 | | df-ima 5593 |
. . . . . . 7
⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) |
37 | | foeq3 6670 |
. . . . . . 7
⊢ ((𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵):𝐵–onto→(𝐹 “ 𝐵) ↔ (𝐹 ↾ 𝐵):𝐵–onto→ran (𝐹 ↾ 𝐵))) |
38 | 36, 37 | ax-mp 5 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐵):𝐵–onto→(𝐹 “ 𝐵) ↔ (𝐹 ↾ 𝐵):𝐵–onto→ran (𝐹 ↾ 𝐵)) |
39 | 35, 38 | sylib 217 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵–onto→ran (𝐹 ↾ 𝐵)) |
40 | | resdif 6720 |
. . . . 5
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐷):𝐷–onto→ran (𝐹 ↾ 𝐷) ∧ (𝐹 ↾ 𝐵):𝐵–onto→ran (𝐹 ↾ 𝐵)) → (𝐹 ↾ (𝐷 ∖ 𝐵)):(𝐷 ∖ 𝐵)–1-1-onto→(ran
(𝐹 ↾ 𝐷) ∖ ran (𝐹 ↾ 𝐵))) |
41 | 23, 31, 39, 40 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐷 ∖ 𝐵)):(𝐷 ∖ 𝐵)–1-1-onto→(ran
(𝐹 ↾ 𝐷) ∖ ran (𝐹 ↾ 𝐵))) |
42 | | f1ofn 6701 |
. . . . . . . . 9
⊢ (𝐹:𝐷–1-1-onto→𝐷 → 𝐹 Fn 𝐷) |
43 | | fnresdm 6535 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝐷 → (𝐹 ↾ 𝐷) = 𝐹) |
44 | 1, 42, 43 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ 𝐷) = 𝐹) |
45 | 44 | rneqd 5836 |
. . . . . . 7
⊢ (𝜑 → ran (𝐹 ↾ 𝐷) = ran 𝐹) |
46 | | f1ofo 6707 |
. . . . . . . 8
⊢ (𝐹:𝐷–1-1-onto→𝐷 → 𝐹:𝐷–onto→𝐷) |
47 | | forn 6675 |
. . . . . . . 8
⊢ (𝐹:𝐷–onto→𝐷 → ran 𝐹 = 𝐷) |
48 | 1, 46, 47 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 = 𝐷) |
49 | 45, 48 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ran (𝐹 ↾ 𝐷) = 𝐷) |
50 | 49 | difeq1d 4052 |
. . . . 5
⊢ (𝜑 → (ran (𝐹 ↾ 𝐷) ∖ ran (𝐹 ↾ 𝐵)) = (𝐷 ∖ ran (𝐹 ↾ 𝐵))) |
51 | 50 | f1oeq3d 6697 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ (𝐷 ∖ 𝐵)):(𝐷 ∖ 𝐵)–1-1-onto→(ran
(𝐹 ↾ 𝐷) ∖ ran (𝐹 ↾ 𝐵)) ↔ (𝐹 ↾ (𝐷 ∖ 𝐵)):(𝐷 ∖ 𝐵)–1-1-onto→(𝐷 ∖ ran (𝐹 ↾ 𝐵)))) |
52 | 41, 51 | mpbid 231 |
. . 3
⊢ (𝜑 → (𝐹 ↾ (𝐷 ∖ 𝐵)):(𝐷 ∖ 𝐵)–1-1-onto→(𝐷 ∖ ran (𝐹 ↾ 𝐵))) |
53 | | f1ococnv2 6726 |
. . 3
⊢ ((𝐹 ↾ (𝐷 ∖ 𝐵)):(𝐷 ∖ 𝐵)–1-1-onto→(𝐷 ∖ ran (𝐹 ↾ 𝐵)) → ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡(𝐹 ↾ (𝐷 ∖ 𝐵))) = ( I ↾ (𝐷 ∖ ran (𝐹 ↾ 𝐵)))) |
54 | 52, 53 | syl 17 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡(𝐹 ↾ (𝐷 ∖ 𝐵))) = ( I ↾ (𝐷 ∖ ran (𝐹 ↾ 𝐵)))) |
55 | 10, 20, 54 | 3eqtr3d 2786 |
1
⊢ (𝜑 → ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡𝐹) = ( I ↾ (𝐷 ∖ ran (𝐹 ↾ 𝐵)))) |