| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoi1 | Structured version Visualization version GIF version | ||
| Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi1 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6705 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | df-fn 6533 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 3 | eqimss 4017 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | cnvi 6130 | . . . . . . . . . 10 ⊢ ◡ I = I | |
| 5 | 4 | reseq1i 5962 | . . . . . . . . 9 ⊢ (◡ I ↾ 𝐴) = ( I ↾ 𝐴) |
| 6 | 5 | cnveqi 5854 | . . . . . . . 8 ⊢ ◡(◡ I ↾ 𝐴) = ◡( I ↾ 𝐴) |
| 7 | cnvresid 6614 | . . . . . . . 8 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 8 | 6, 7 | eqtr2i 2759 | . . . . . . 7 ⊢ ( I ↾ 𝐴) = ◡(◡ I ↾ 𝐴) |
| 9 | 8 | coeq2i 5840 | . . . . . 6 ⊢ (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ ◡(◡ I ↾ 𝐴)) |
| 10 | cores2 6248 | . . . . . 6 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ◡(◡ I ↾ 𝐴)) = (𝐹 ∘ I )) | |
| 11 | 9, 10 | eqtrid 2782 | . . . . 5 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
| 12 | 3, 11 | syl 17 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
| 13 | funrel 6552 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 14 | coi1 6251 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
| 16 | 12, 15 | sylan9eqr 2792 | . . 3 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 17 | 2, 16 | sylbi 217 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 18 | 1, 17 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3926 I cid 5547 ◡ccnv 5653 dom cdm 5654 ↾ cres 5656 ∘ ccom 5658 Rel wrel 5659 Fun wfun 6524 Fn wfn 6525 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: fcof1oinvd 7285 mapen 9153 mapfien 9418 hashfacen 14470 cofurid 17902 setccatid 18095 estrccatid 18142 curf2ndf 18257 efmndid 18864 efmndmnd 18865 f1omvdco2 19427 psgnunilem1 19472 pf1mpf 22288 pf1ind 22291 wilthlem3 27030 hoico1 31683 fmptco1f1o 32557 fcobijfs 32646 cycpmconjslem2 33112 cycpmconjs 33113 cyc3conja 33114 1arithidomlem2 33497 reprpmtf1o 34604 ltrncoidN 40093 trlcoabs2N 40687 trlcoat 40688 cdlemg47a 40699 cdlemg46 40700 trljco 40705 tendo1mulr 40736 tendo0co2 40753 cdlemi2 40784 cdlemk2 40797 cdlemk4 40799 cdlemk8 40803 cdlemk53 40922 cdlemk55a 40924 dvhopN 41081 dihopelvalcpre 41213 dihmeetlem1N 41255 dihglblem5apreN 41256 diophrw 42729 mendring 43159 rngccatidALTV 48195 ringccatidALTV 48229 |
| Copyright terms: Public domain | W3C validator |