Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcoi1 | Structured version Visualization version GIF version |
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi1 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6600 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | df-fn 6436 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
3 | eqimss 3977 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | cnvi 6045 | . . . . . . . . . 10 ⊢ ◡ I = I | |
5 | 4 | reseq1i 5887 | . . . . . . . . 9 ⊢ (◡ I ↾ 𝐴) = ( I ↾ 𝐴) |
6 | 5 | cnveqi 5783 | . . . . . . . 8 ⊢ ◡(◡ I ↾ 𝐴) = ◡( I ↾ 𝐴) |
7 | cnvresid 6513 | . . . . . . . 8 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
8 | 6, 7 | eqtr2i 2767 | . . . . . . 7 ⊢ ( I ↾ 𝐴) = ◡(◡ I ↾ 𝐴) |
9 | 8 | coeq2i 5769 | . . . . . 6 ⊢ (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ ◡(◡ I ↾ 𝐴)) |
10 | cores2 6163 | . . . . . 6 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ◡(◡ I ↾ 𝐴)) = (𝐹 ∘ I )) | |
11 | 9, 10 | eqtrid 2790 | . . . . 5 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
13 | funrel 6451 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
14 | coi1 6166 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
16 | 12, 15 | sylan9eqr 2800 | . . 3 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
17 | 2, 16 | sylbi 216 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
18 | 1, 17 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊆ wss 3887 I cid 5488 ◡ccnv 5588 dom cdm 5589 ↾ cres 5591 ∘ ccom 5593 Rel wrel 5594 Fun wfun 6427 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: fcof1oinvd 7165 mapen 8928 mapfien 9167 hashfacen 14166 hashfacenOLD 14167 cofurid 17606 setccatid 17799 estrccatid 17848 curf2ndf 17965 efmndid 18527 efmndmnd 18528 f1omvdco2 19056 psgnunilem1 19101 pf1mpf 21518 pf1ind 21521 wilthlem3 26219 hoico1 30118 fmptco1f1o 30968 fcobijfs 31058 cycpmconjslem2 31422 cycpmconjs 31423 cyc3conja 31424 reprpmtf1o 32606 ltrncoidN 38142 trlcoabs2N 38736 trlcoat 38737 cdlemg47a 38748 cdlemg46 38749 trljco 38754 tendo1mulr 38785 tendo0co2 38802 cdlemi2 38833 cdlemk2 38846 cdlemk4 38848 cdlemk8 38852 cdlemk53 38971 cdlemk55a 38973 dvhopN 39130 dihopelvalcpre 39262 dihmeetlem1N 39304 dihglblem5apreN 39305 diophrw 40581 mendring 41017 rngccatidALTV 45547 ringccatidALTV 45610 |
Copyright terms: Public domain | W3C validator |