| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoi1 | Structured version Visualization version GIF version | ||
| Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi1 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6688 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | df-fn 6514 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 3 | eqimss 4005 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | cnvi 6114 | . . . . . . . . . 10 ⊢ ◡ I = I | |
| 5 | 4 | reseq1i 5946 | . . . . . . . . 9 ⊢ (◡ I ↾ 𝐴) = ( I ↾ 𝐴) |
| 6 | 5 | cnveqi 5838 | . . . . . . . 8 ⊢ ◡(◡ I ↾ 𝐴) = ◡( I ↾ 𝐴) |
| 7 | cnvresid 6595 | . . . . . . . 8 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 8 | 6, 7 | eqtr2i 2753 | . . . . . . 7 ⊢ ( I ↾ 𝐴) = ◡(◡ I ↾ 𝐴) |
| 9 | 8 | coeq2i 5824 | . . . . . 6 ⊢ (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ ◡(◡ I ↾ 𝐴)) |
| 10 | cores2 6232 | . . . . . 6 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ◡(◡ I ↾ 𝐴)) = (𝐹 ∘ I )) | |
| 11 | 9, 10 | eqtrid 2776 | . . . . 5 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
| 12 | 3, 11 | syl 17 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
| 13 | funrel 6533 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 14 | coi1 6235 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
| 16 | 12, 15 | sylan9eqr 2786 | . . 3 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 17 | 2, 16 | sylbi 217 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 18 | 1, 17 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 I cid 5532 ◡ccnv 5637 dom cdm 5638 ↾ cres 5640 ∘ ccom 5642 Rel wrel 5643 Fun wfun 6505 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fcof1oinvd 7268 mapen 9105 mapfien 9359 hashfacen 14419 cofurid 17853 setccatid 18046 estrccatid 18093 curf2ndf 18208 efmndid 18815 efmndmnd 18816 f1omvdco2 19378 psgnunilem1 19423 pf1mpf 22239 pf1ind 22242 wilthlem3 26980 hoico1 31685 fmptco1f1o 32557 fcobijfs 32646 cycpmconjslem2 33112 cycpmconjs 33113 cyc3conja 33114 1arithidomlem2 33507 reprpmtf1o 34617 ltrncoidN 40122 trlcoabs2N 40716 trlcoat 40717 cdlemg47a 40728 cdlemg46 40729 trljco 40734 tendo1mulr 40765 tendo0co2 40782 cdlemi2 40813 cdlemk2 40826 cdlemk4 40828 cdlemk8 40832 cdlemk53 40951 cdlemk55a 40953 dvhopN 41110 dihopelvalcpre 41242 dihmeetlem1N 41284 dihglblem5apreN 41285 diophrw 42747 mendring 43177 rngccatidALTV 48260 ringccatidALTV 48294 |
| Copyright terms: Public domain | W3C validator |