| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcoi1 | Structured version Visualization version GIF version | ||
| Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fcoi1 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6652 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | df-fn 6485 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 3 | eqimss 3994 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | cnvi 6090 | . . . . . . . . . 10 ⊢ ◡ I = I | |
| 5 | 4 | reseq1i 5926 | . . . . . . . . 9 ⊢ (◡ I ↾ 𝐴) = ( I ↾ 𝐴) |
| 6 | 5 | cnveqi 5817 | . . . . . . . 8 ⊢ ◡(◡ I ↾ 𝐴) = ◡( I ↾ 𝐴) |
| 7 | cnvresid 6561 | . . . . . . . 8 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 8 | 6, 7 | eqtr2i 2753 | . . . . . . 7 ⊢ ( I ↾ 𝐴) = ◡(◡ I ↾ 𝐴) |
| 9 | 8 | coeq2i 5803 | . . . . . 6 ⊢ (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ ◡(◡ I ↾ 𝐴)) |
| 10 | cores2 6208 | . . . . . 6 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ◡(◡ I ↾ 𝐴)) = (𝐹 ∘ I )) | |
| 11 | 9, 10 | eqtrid 2776 | . . . . 5 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
| 12 | 3, 11 | syl 17 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
| 13 | funrel 6499 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 14 | coi1 6211 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
| 16 | 12, 15 | sylan9eqr 2786 | . . 3 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 17 | 2, 16 | sylbi 217 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 18 | 1, 17 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3903 I cid 5513 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 ∘ ccom 5623 Rel wrel 5624 Fun wfun 6476 Fn wfn 6477 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 |
| This theorem is referenced by: fcof1oinvd 7230 mapen 9058 mapfien 9298 hashfacen 14361 cofurid 17798 setccatid 17991 estrccatid 18038 curf2ndf 18153 efmndid 18762 efmndmnd 18763 f1omvdco2 19327 psgnunilem1 19372 pf1mpf 22237 pf1ind 22240 wilthlem3 26978 hoico1 31700 fmptco1f1o 32576 fcobijfs 32665 cycpmconjslem2 33097 cycpmconjs 33098 cyc3conja 33099 1arithidomlem2 33473 mplvrpmga 33546 reprpmtf1o 34594 ltrncoidN 40107 trlcoabs2N 40701 trlcoat 40702 cdlemg47a 40713 cdlemg46 40714 trljco 40719 tendo1mulr 40750 tendo0co2 40767 cdlemi2 40798 cdlemk2 40811 cdlemk4 40813 cdlemk8 40817 cdlemk53 40936 cdlemk55a 40938 dvhopN 41095 dihopelvalcpre 41227 dihmeetlem1N 41269 dihglblem5apreN 41270 diophrw 42732 mendring 43161 rngccatidALTV 48256 ringccatidALTV 48290 |
| Copyright terms: Public domain | W3C validator |