MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoi1 Structured version   Visualization version   GIF version

Theorem fcoi1 6692
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)

Proof of Theorem fcoi1
StepHypRef Expression
1 ffn 6646 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 df-fn 6479 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eqimss 3988 . . . . 5 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
4 cnvi 6083 . . . . . . . . . 10 I = I
54reseq1i 5919 . . . . . . . . 9 ( I ↾ 𝐴) = ( I ↾ 𝐴)
65cnveqi 5809 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
7 cnvresid 6555 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
86, 7eqtr2i 2755 . . . . . . 7 ( I ↾ 𝐴) = ( I ↾ 𝐴)
98coeq2i 5795 . . . . . 6 (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹( I ↾ 𝐴))
10 cores2 6202 . . . . . 6 (dom 𝐹𝐴 → (𝐹( I ↾ 𝐴)) = (𝐹 ∘ I ))
119, 10eqtrid 2778 . . . . 5 (dom 𝐹𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
123, 11syl 17 . . . 4 (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
13 funrel 6493 . . . . 5 (Fun 𝐹 → Rel 𝐹)
14 coi1 6205 . . . . 5 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1513, 14syl 17 . . . 4 (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹)
1612, 15sylan9eqr 2788 . . 3 ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
172, 16sylbi 217 . 2 (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
181, 17syl 17 1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wss 3897   I cid 5505  ccnv 5610  dom cdm 5611  cres 5613  ccom 5615  Rel wrel 5616  Fun wfun 6470   Fn wfn 6471  wf 6472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-fun 6478  df-fn 6479  df-f 6480
This theorem is referenced by:  fcof1oinvd  7222  mapen  9049  mapfien  9287  hashfacen  14356  cofurid  17793  setccatid  17986  estrccatid  18033  curf2ndf  18148  efmndid  18791  efmndmnd  18792  f1omvdco2  19355  psgnunilem1  19400  pf1mpf  22262  pf1ind  22265  wilthlem3  27002  hoico1  31728  fmptco1f1o  32607  fcobijfs  32696  cocnvf1o  32704  cycpmconjslem2  33116  cycpmconjs  33117  cyc3conja  33118  1arithidomlem2  33493  mplvrpmga  33567  mplvrpmrhm  33569  reprpmtf1o  34631  ltrncoidN  40167  trlcoabs2N  40761  trlcoat  40762  cdlemg47a  40773  cdlemg46  40774  trljco  40779  tendo1mulr  40810  tendo0co2  40827  cdlemi2  40858  cdlemk2  40871  cdlemk4  40873  cdlemk8  40877  cdlemk53  40996  cdlemk55a  40998  dvhopN  41155  dihopelvalcpre  41287  dihmeetlem1N  41329  dihglblem5apreN  41330  diophrw  42792  mendring  43221  rngccatidALTV  48303  ringccatidALTV  48337
  Copyright terms: Public domain W3C validator