Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcoi1 | Structured version Visualization version GIF version |
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi1 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6545 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | df-fn 6383 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
3 | eqimss 3957 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | cnvi 6005 | . . . . . . . . . 10 ⊢ ◡ I = I | |
5 | 4 | reseq1i 5847 | . . . . . . . . 9 ⊢ (◡ I ↾ 𝐴) = ( I ↾ 𝐴) |
6 | 5 | cnveqi 5743 | . . . . . . . 8 ⊢ ◡(◡ I ↾ 𝐴) = ◡( I ↾ 𝐴) |
7 | cnvresid 6459 | . . . . . . . 8 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
8 | 6, 7 | eqtr2i 2766 | . . . . . . 7 ⊢ ( I ↾ 𝐴) = ◡(◡ I ↾ 𝐴) |
9 | 8 | coeq2i 5729 | . . . . . 6 ⊢ (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ ◡(◡ I ↾ 𝐴)) |
10 | cores2 6123 | . . . . . 6 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ◡(◡ I ↾ 𝐴)) = (𝐹 ∘ I )) | |
11 | 9, 10 | eqtrid 2789 | . . . . 5 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
13 | funrel 6397 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
14 | coi1 6126 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
16 | 12, 15 | sylan9eqr 2800 | . . 3 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
17 | 2, 16 | sylbi 220 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
18 | 1, 17 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ⊆ wss 3866 I cid 5454 ◡ccnv 5550 dom cdm 5551 ↾ cres 5553 ∘ ccom 5555 Rel wrel 5556 Fun wfun 6374 Fn wfn 6375 ⟶wf 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-fun 6382 df-fn 6383 df-f 6384 |
This theorem is referenced by: fcof1oinvd 7103 mapen 8810 mapfien 9024 hashfacen 14018 hashfacenOLD 14019 cofurid 17397 setccatid 17590 estrccatid 17639 curf2ndf 17755 efmndid 18315 efmndmnd 18316 f1omvdco2 18840 psgnunilem1 18885 pf1mpf 21268 pf1ind 21271 wilthlem3 25952 hoico1 29837 fmptco1f1o 30687 fcobijfs 30778 cycpmconjslem2 31141 cycpmconjs 31142 cyc3conja 31143 reprpmtf1o 32318 ltrncoidN 37879 trlcoabs2N 38473 trlcoat 38474 cdlemg47a 38485 cdlemg46 38486 trljco 38491 tendo1mulr 38522 tendo0co2 38539 cdlemi2 38570 cdlemk2 38583 cdlemk4 38585 cdlemk8 38589 cdlemk53 38708 cdlemk55a 38710 dvhopN 38867 dihopelvalcpre 38999 dihmeetlem1N 39041 dihglblem5apreN 39042 diophrw 40284 mendring 40720 rngccatidALTV 45220 ringccatidALTV 45283 |
Copyright terms: Public domain | W3C validator |