![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcoi1 | Structured version Visualization version GIF version |
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi1 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6747 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | df-fn 6576 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
3 | eqimss 4067 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | cnvi 6173 | . . . . . . . . . 10 ⊢ ◡ I = I | |
5 | 4 | reseq1i 6005 | . . . . . . . . 9 ⊢ (◡ I ↾ 𝐴) = ( I ↾ 𝐴) |
6 | 5 | cnveqi 5899 | . . . . . . . 8 ⊢ ◡(◡ I ↾ 𝐴) = ◡( I ↾ 𝐴) |
7 | cnvresid 6657 | . . . . . . . 8 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
8 | 6, 7 | eqtr2i 2769 | . . . . . . 7 ⊢ ( I ↾ 𝐴) = ◡(◡ I ↾ 𝐴) |
9 | 8 | coeq2i 5885 | . . . . . 6 ⊢ (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ ◡(◡ I ↾ 𝐴)) |
10 | cores2 6290 | . . . . . 6 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ◡(◡ I ↾ 𝐴)) = (𝐹 ∘ I )) | |
11 | 9, 10 | eqtrid 2792 | . . . . 5 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
13 | funrel 6595 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
14 | coi1 6293 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
16 | 12, 15 | sylan9eqr 2802 | . . 3 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
17 | 2, 16 | sylbi 217 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
18 | 1, 17 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 I cid 5592 ◡ccnv 5699 dom cdm 5700 ↾ cres 5702 ∘ ccom 5704 Rel wrel 5705 Fun wfun 6567 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fcof1oinvd 7329 mapen 9207 mapfien 9477 hashfacen 14503 cofurid 17955 setccatid 18151 estrccatid 18200 curf2ndf 18317 efmndid 18923 efmndmnd 18924 f1omvdco2 19490 psgnunilem1 19535 pf1mpf 22377 pf1ind 22380 wilthlem3 27131 hoico1 31788 fmptco1f1o 32652 fcobijfs 32737 cycpmconjslem2 33148 cycpmconjs 33149 cyc3conja 33150 1arithidomlem2 33529 reprpmtf1o 34603 ltrncoidN 40085 trlcoabs2N 40679 trlcoat 40680 cdlemg47a 40691 cdlemg46 40692 trljco 40697 tendo1mulr 40728 tendo0co2 40745 cdlemi2 40776 cdlemk2 40789 cdlemk4 40791 cdlemk8 40795 cdlemk53 40914 cdlemk55a 40916 dvhopN 41073 dihopelvalcpre 41205 dihmeetlem1N 41247 dihglblem5apreN 41248 diophrw 42715 mendring 43149 rngccatidALTV 47995 ringccatidALTV 48029 |
Copyright terms: Public domain | W3C validator |