MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoi1 Structured version   Visualization version   GIF version

Theorem fcoi1 6737
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)

Proof of Theorem fcoi1
StepHypRef Expression
1 ffn 6691 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 df-fn 6517 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eqimss 4008 . . . . 5 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
4 cnvi 6117 . . . . . . . . . 10 I = I
54reseq1i 5949 . . . . . . . . 9 ( I ↾ 𝐴) = ( I ↾ 𝐴)
65cnveqi 5841 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
7 cnvresid 6598 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
86, 7eqtr2i 2754 . . . . . . 7 ( I ↾ 𝐴) = ( I ↾ 𝐴)
98coeq2i 5827 . . . . . 6 (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹( I ↾ 𝐴))
10 cores2 6235 . . . . . 6 (dom 𝐹𝐴 → (𝐹( I ↾ 𝐴)) = (𝐹 ∘ I ))
119, 10eqtrid 2777 . . . . 5 (dom 𝐹𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
123, 11syl 17 . . . 4 (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
13 funrel 6536 . . . . 5 (Fun 𝐹 → Rel 𝐹)
14 coi1 6238 . . . . 5 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1513, 14syl 17 . . . 4 (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹)
1612, 15sylan9eqr 2787 . . 3 ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
172, 16sylbi 217 . 2 (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
181, 17syl 17 1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wss 3917   I cid 5535  ccnv 5640  dom cdm 5641  cres 5643  ccom 5645  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  fcof1oinvd  7271  mapen  9111  mapfien  9366  hashfacen  14426  cofurid  17860  setccatid  18053  estrccatid  18100  curf2ndf  18215  efmndid  18822  efmndmnd  18823  f1omvdco2  19385  psgnunilem1  19430  pf1mpf  22246  pf1ind  22249  wilthlem3  26987  hoico1  31692  fmptco1f1o  32564  fcobijfs  32653  cycpmconjslem2  33119  cycpmconjs  33120  cyc3conja  33121  1arithidomlem2  33514  reprpmtf1o  34624  ltrncoidN  40129  trlcoabs2N  40723  trlcoat  40724  cdlemg47a  40735  cdlemg46  40736  trljco  40741  tendo1mulr  40772  tendo0co2  40789  cdlemi2  40820  cdlemk2  40833  cdlemk4  40835  cdlemk8  40839  cdlemk53  40958  cdlemk55a  40960  dvhopN  41117  dihopelvalcpre  41249  dihmeetlem1N  41291  dihglblem5apreN  41292  diophrw  42754  mendring  43184  rngccatidALTV  48264  ringccatidALTV  48298
  Copyright terms: Public domain W3C validator