![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcoi1 | Structured version Visualization version GIF version |
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fcoi1 | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6720 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | df-fn 6549 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
3 | eqimss 4037 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | cnvi 6145 | . . . . . . . . . 10 ⊢ ◡ I = I | |
5 | 4 | reseq1i 5977 | . . . . . . . . 9 ⊢ (◡ I ↾ 𝐴) = ( I ↾ 𝐴) |
6 | 5 | cnveqi 5873 | . . . . . . . 8 ⊢ ◡(◡ I ↾ 𝐴) = ◡( I ↾ 𝐴) |
7 | cnvresid 6630 | . . . . . . . 8 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
8 | 6, 7 | eqtr2i 2755 | . . . . . . 7 ⊢ ( I ↾ 𝐴) = ◡(◡ I ↾ 𝐴) |
9 | 8 | coeq2i 5859 | . . . . . 6 ⊢ (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ ◡(◡ I ↾ 𝐴)) |
10 | cores2 6262 | . . . . . 6 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ◡(◡ I ↾ 𝐴)) = (𝐹 ∘ I )) | |
11 | 9, 10 | eqtrid 2778 | . . . . 5 ⊢ (dom 𝐹 ⊆ 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
12 | 3, 11 | syl 17 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I )) |
13 | funrel 6568 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
14 | coi1 6265 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
16 | 12, 15 | sylan9eqr 2788 | . . 3 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
17 | 2, 16 | sylbi 216 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
18 | 1, 17 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ⊆ wss 3946 I cid 5571 ◡ccnv 5673 dom cdm 5674 ↾ cres 5676 ∘ ccom 5678 Rel wrel 5679 Fun wfun 6540 Fn wfn 6541 ⟶wf 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-fun 6548 df-fn 6549 df-f 6550 |
This theorem is referenced by: fcof1oinvd 7299 mapen 9171 mapfien 9444 hashfacen 14466 hashfacenOLD 14467 cofurid 17905 setccatid 18101 estrccatid 18150 curf2ndf 18267 efmndid 18873 efmndmnd 18874 f1omvdco2 19442 psgnunilem1 19487 pf1mpf 22340 pf1ind 22343 wilthlem3 27095 hoico1 31686 fmptco1f1o 32550 fcobijfs 32637 cycpmconjslem2 33037 cycpmconjs 33038 cyc3conja 33039 1arithidomlem2 33417 reprpmtf1o 34485 ltrncoidN 39840 trlcoabs2N 40434 trlcoat 40435 cdlemg47a 40446 cdlemg46 40447 trljco 40452 tendo1mulr 40483 tendo0co2 40500 cdlemi2 40531 cdlemk2 40544 cdlemk4 40546 cdlemk8 40550 cdlemk53 40669 cdlemk55a 40671 dvhopN 40828 dihopelvalcpre 40960 dihmeetlem1N 41002 dihglblem5apreN 41003 diophrw 42453 mendring 42890 rngccatidALTV 47685 ringccatidALTV 47719 |
Copyright terms: Public domain | W3C validator |