MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoi1 Structured version   Visualization version   GIF version

Theorem fcoi1 6546
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)

Proof of Theorem fcoi1
StepHypRef Expression
1 ffn 6508 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 df-fn 6352 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eqimss 4022 . . . . 5 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
4 cnvi 5994 . . . . . . . . . 10 I = I
54reseq1i 5843 . . . . . . . . 9 ( I ↾ 𝐴) = ( I ↾ 𝐴)
65cnveqi 5739 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
7 cnvresid 6427 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
86, 7eqtr2i 2845 . . . . . . 7 ( I ↾ 𝐴) = ( I ↾ 𝐴)
98coeq2i 5725 . . . . . 6 (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹( I ↾ 𝐴))
10 cores2 6106 . . . . . 6 (dom 𝐹𝐴 → (𝐹( I ↾ 𝐴)) = (𝐹 ∘ I ))
119, 10syl5eq 2868 . . . . 5 (dom 𝐹𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
123, 11syl 17 . . . 4 (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
13 funrel 6366 . . . . 5 (Fun 𝐹 → Rel 𝐹)
14 coi1 6109 . . . . 5 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1513, 14syl 17 . . . 4 (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹)
1612, 15sylan9eqr 2878 . . 3 ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
172, 16sylbi 219 . 2 (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
181, 17syl 17 1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wss 3935   I cid 5453  ccnv 5548  dom cdm 5549  cres 5551  ccom 5553  Rel wrel 5554  Fun wfun 6343   Fn wfn 6344  wf 6345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-fun 6351  df-fn 6352  df-f 6353
This theorem is referenced by:  fcof1oinvd  7043  mapen  8675  mapfien  8865  hashfacen  13806  cofurid  17155  setccatid  17338  estrccatid  17376  curf2ndf  17491  efmndid  18047  efmndmnd  18048  f1omvdco2  18570  psgnunilem1  18615  pf1mpf  20509  pf1ind  20512  wilthlem3  25641  hoico1  29527  fmptco1f1o  30372  fcobijfs  30453  cycpmconjslem2  30792  cycpmconjs  30793  cyc3conja  30794  reprpmtf1o  31892  ltrncoidN  37258  trlcoabs2N  37852  trlcoat  37853  cdlemg47a  37864  cdlemg46  37865  trljco  37870  tendo1mulr  37901  tendo0co2  37918  cdlemi2  37949  cdlemk2  37962  cdlemk4  37964  cdlemk8  37968  cdlemk53  38087  cdlemk55a  38089  dvhopN  38246  dihopelvalcpre  38378  dihmeetlem1N  38420  dihglblem5apreN  38421  diophrw  39349  mendring  39785  rngccatidALTV  44254  ringccatidALTV  44317
  Copyright terms: Public domain W3C validator