MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcoi1 Structured version   Visualization version   GIF version

Theorem fcoi1 6765
Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)

Proof of Theorem fcoi1
StepHypRef Expression
1 ffn 6717 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 df-fn 6546 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
3 eqimss 4040 . . . . 5 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
4 cnvi 6141 . . . . . . . . . 10 I = I
54reseq1i 5977 . . . . . . . . 9 ( I ↾ 𝐴) = ( I ↾ 𝐴)
65cnveqi 5874 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
7 cnvresid 6627 . . . . . . . 8 ( I ↾ 𝐴) = ( I ↾ 𝐴)
86, 7eqtr2i 2761 . . . . . . 7 ( I ↾ 𝐴) = ( I ↾ 𝐴)
98coeq2i 5860 . . . . . 6 (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹( I ↾ 𝐴))
10 cores2 6258 . . . . . 6 (dom 𝐹𝐴 → (𝐹( I ↾ 𝐴)) = (𝐹 ∘ I ))
119, 10eqtrid 2784 . . . . 5 (dom 𝐹𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
123, 11syl 17 . . . 4 (dom 𝐹 = 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = (𝐹 ∘ I ))
13 funrel 6565 . . . . 5 (Fun 𝐹 → Rel 𝐹)
14 coi1 6261 . . . . 5 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
1513, 14syl 17 . . . 4 (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹)
1612, 15sylan9eqr 2794 . . 3 ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
172, 16sylbi 216 . 2 (𝐹 Fn 𝐴 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
181, 17syl 17 1 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wss 3948   I cid 5573  ccnv 5675  dom cdm 5676  cres 5678  ccom 5680  Rel wrel 5681  Fun wfun 6537   Fn wfn 6538  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547
This theorem is referenced by:  fcof1oinvd  7293  mapen  9143  mapfien  9405  hashfacen  14417  hashfacenOLD  14418  cofurid  17845  setccatid  18038  estrccatid  18087  curf2ndf  18204  efmndid  18805  efmndmnd  18806  f1omvdco2  19357  psgnunilem1  19402  pf1mpf  22091  pf1ind  22094  wilthlem3  26798  hoico1  31264  fmptco1f1o  32112  fcobijfs  32203  cycpmconjslem2  32572  cycpmconjs  32573  cyc3conja  32574  reprpmtf1o  33924  ltrncoidN  39302  trlcoabs2N  39896  trlcoat  39897  cdlemg47a  39908  cdlemg46  39909  trljco  39914  tendo1mulr  39945  tendo0co2  39962  cdlemi2  39993  cdlemk2  40006  cdlemk4  40008  cdlemk8  40012  cdlemk53  40131  cdlemk55a  40133  dvhopN  40290  dihopelvalcpre  40422  dihmeetlem1N  40464  dihglblem5apreN  40465  diophrw  41799  mendring  42236  rngccatidALTV  46976  ringccatidALTV  47039
  Copyright terms: Public domain W3C validator