MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustex3sym Structured version   Visualization version   GIF version

Theorem ustex3sym 23569
Description: In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than a third of 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Assertion
Ref Expression
ustex3sym ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉))
Distinct variable groups:   𝑤,𝑈   𝑤,𝑉   𝑤,𝑋

Proof of Theorem ustex3sym
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ustex2sym 23568 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣))
21ad4ant13 749 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣))
3 simprl 769 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → 𝑤 = 𝑤)
4 simp-5l 783 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → 𝑈 ∈ (UnifOn‘𝑋))
5 simplr 767 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → 𝑤𝑈)
6 ustssco 23566 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → 𝑤 ⊆ (𝑤𝑤))
74, 5, 6syl2anc 584 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → 𝑤 ⊆ (𝑤𝑤))
8 simprr 771 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑤𝑤) ⊆ 𝑣)
9 coss2 5812 . . . . . . . . . 10 ((𝑤𝑤) ⊆ 𝑣 → (𝑤 ∘ (𝑤𝑤)) ⊆ (𝑤𝑣))
109adantl 482 . . . . . . . . 9 ((𝑤 ⊆ (𝑤𝑤) ∧ (𝑤𝑤) ⊆ 𝑣) → (𝑤 ∘ (𝑤𝑤)) ⊆ (𝑤𝑣))
11 sstr 3952 . . . . . . . . . 10 ((𝑤 ⊆ (𝑤𝑤) ∧ (𝑤𝑤) ⊆ 𝑣) → 𝑤𝑣)
12 coss1 5811 . . . . . . . . . 10 (𝑤𝑣 → (𝑤𝑣) ⊆ (𝑣𝑣))
1311, 12syl 17 . . . . . . . . 9 ((𝑤 ⊆ (𝑤𝑤) ∧ (𝑤𝑤) ⊆ 𝑣) → (𝑤𝑣) ⊆ (𝑣𝑣))
1410, 13sstrd 3954 . . . . . . . 8 ((𝑤 ⊆ (𝑤𝑤) ∧ (𝑤𝑤) ⊆ 𝑣) → (𝑤 ∘ (𝑤𝑤)) ⊆ (𝑣𝑣))
157, 8, 14syl2anc 584 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑤 ∘ (𝑤𝑤)) ⊆ (𝑣𝑣))
16 simpllr 774 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑣𝑣) ⊆ 𝑉)
1715, 16sstrd 3954 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉)
183, 17jca 512 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉))
1918ex 413 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) → ((𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣) → (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉)))
2019reximdva 3165 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → (∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉)))
212, 20mpd 15 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉))
22 ustexhalf 23562 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑣𝑈 (𝑣𝑣) ⊆ 𝑉)
2321, 22r19.29a 3159 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073  wss 3910  ccnv 5632  ccom 5637  cfv 6496  UnifOncust 23551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-iota 6448  df-fun 6498  df-fv 6504  df-ust 23552
This theorem is referenced by:  utopreg  23604
  Copyright terms: Public domain W3C validator