MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustex3sym Structured version   Visualization version   GIF version

Theorem ustex3sym 24105
Description: In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than a third of 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Assertion
Ref Expression
ustex3sym ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉))
Distinct variable groups:   𝑤,𝑈   𝑤,𝑉   𝑤,𝑋

Proof of Theorem ustex3sym
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ustex2sym 24104 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣))
21ad4ant13 751 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣))
3 simprl 770 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → 𝑤 = 𝑤)
4 simp-5l 784 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → 𝑈 ∈ (UnifOn‘𝑋))
5 simplr 768 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → 𝑤𝑈)
6 ustssco 24102 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → 𝑤 ⊆ (𝑤𝑤))
74, 5, 6syl2anc 584 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → 𝑤 ⊆ (𝑤𝑤))
8 simprr 772 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑤𝑤) ⊆ 𝑣)
9 coss2 5820 . . . . . . . . . 10 ((𝑤𝑤) ⊆ 𝑣 → (𝑤 ∘ (𝑤𝑤)) ⊆ (𝑤𝑣))
109adantl 481 . . . . . . . . 9 ((𝑤 ⊆ (𝑤𝑤) ∧ (𝑤𝑤) ⊆ 𝑣) → (𝑤 ∘ (𝑤𝑤)) ⊆ (𝑤𝑣))
11 sstr 3955 . . . . . . . . . 10 ((𝑤 ⊆ (𝑤𝑤) ∧ (𝑤𝑤) ⊆ 𝑣) → 𝑤𝑣)
12 coss1 5819 . . . . . . . . . 10 (𝑤𝑣 → (𝑤𝑣) ⊆ (𝑣𝑣))
1311, 12syl 17 . . . . . . . . 9 ((𝑤 ⊆ (𝑤𝑤) ∧ (𝑤𝑤) ⊆ 𝑣) → (𝑤𝑣) ⊆ (𝑣𝑣))
1410, 13sstrd 3957 . . . . . . . 8 ((𝑤 ⊆ (𝑤𝑤) ∧ (𝑤𝑤) ⊆ 𝑣) → (𝑤 ∘ (𝑤𝑤)) ⊆ (𝑣𝑣))
157, 8, 14syl2anc 584 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑤 ∘ (𝑤𝑤)) ⊆ (𝑣𝑣))
16 simpllr 775 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑣𝑣) ⊆ 𝑉)
1715, 16sstrd 3957 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉)
183, 17jca 511 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣)) → (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉))
1918ex 412 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) → ((𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣) → (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉)))
2019reximdva 3146 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → (∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑣) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉)))
212, 20mpd 15 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉))
22 ustexhalf 24098 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑣𝑈 (𝑣𝑣) ⊆ 𝑉)
2321, 22r19.29a 3141 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤𝑤)) ⊆ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3914  ccnv 5637  ccom 5642  cfv 6511  UnifOncust 24087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ust 24088
This theorem is referenced by:  utopreg  24140
  Copyright terms: Public domain W3C validator