MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustex2sym Structured version   Visualization version   GIF version

Theorem ustex2sym 23368
Description: In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than half 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Assertion
Ref Expression
ustex2sym ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉))
Distinct variable groups:   𝑤,𝑈   𝑤,𝑉   𝑤,𝑋

Proof of Theorem ustex2sym
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ustexsym 23367 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑣))
21ad4ant13 748 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑣))
3 simprl 768 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → 𝑤 = 𝑤)
4 coss1 5764 . . . . . . . . 9 (𝑤𝑣 → (𝑤𝑤) ⊆ (𝑣𝑤))
5 coss2 5765 . . . . . . . . 9 (𝑤𝑣 → (𝑣𝑤) ⊆ (𝑣𝑣))
64, 5sstrd 3931 . . . . . . . 8 (𝑤𝑣 → (𝑤𝑤) ⊆ (𝑣𝑣))
76ad2antll 726 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → (𝑤𝑤) ⊆ (𝑣𝑣))
8 simpllr 773 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → (𝑣𝑣) ⊆ 𝑉)
97, 8sstrd 3931 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → (𝑤𝑤) ⊆ 𝑉)
103, 9jca 512 . . . . 5 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) ∧ (𝑤 = 𝑤𝑤𝑣)) → (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉))
1110ex 413 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) ∧ 𝑤𝑈) → ((𝑤 = 𝑤𝑤𝑣) → (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉)))
1211reximdva 3203 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → (∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑣) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉)))
132, 12mpd 15 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑣𝑈) ∧ (𝑣𝑣) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉))
14 ustexhalf 23362 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑣𝑈 (𝑣𝑣) ⊆ 𝑉)
1513, 14r19.29a 3218 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤 ∧ (𝑤𝑤) ⊆ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  wss 3887  ccnv 5588  ccom 5593  cfv 6433  UnifOncust 23351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-ust 23352
This theorem is referenced by:  ustex3sym  23369
  Copyright terms: Public domain W3C validator