Step | Hyp | Ref
| Expression |
1 | | ustexsym 23367 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣)) |
2 | 1 | ad4ant13 748 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣)) |
3 | | simprl 768 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣)) → ◡𝑤 = 𝑤) |
4 | | coss1 5764 |
. . . . . . . . 9
⊢ (𝑤 ⊆ 𝑣 → (𝑤 ∘ 𝑤) ⊆ (𝑣 ∘ 𝑤)) |
5 | | coss2 5765 |
. . . . . . . . 9
⊢ (𝑤 ⊆ 𝑣 → (𝑣 ∘ 𝑤) ⊆ (𝑣 ∘ 𝑣)) |
6 | 4, 5 | sstrd 3931 |
. . . . . . . 8
⊢ (𝑤 ⊆ 𝑣 → (𝑤 ∘ 𝑤) ⊆ (𝑣 ∘ 𝑣)) |
7 | 6 | ad2antll 726 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣)) → (𝑤 ∘ 𝑤) ⊆ (𝑣 ∘ 𝑣)) |
8 | | simpllr 773 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣)) → (𝑣 ∘ 𝑣) ⊆ 𝑉) |
9 | 7, 8 | sstrd 3931 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣)) → (𝑤 ∘ 𝑤) ⊆ 𝑉) |
10 | 3, 9 | jca 512 |
. . . . 5
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) ∧ (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣)) → (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑉)) |
11 | 10 | ex 413 |
. . . 4
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) ∧ 𝑤 ∈ 𝑈) → ((◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣) → (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑉))) |
12 | 11 | reximdva 3203 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) → (∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑣) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑉))) |
13 | 2, 12 | mpd 15 |
. 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) ∧ (𝑣 ∘ 𝑣) ⊆ 𝑉) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑉)) |
14 | | ustexhalf 23362 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑣 ∈ 𝑈 (𝑣 ∘ 𝑣) ⊆ 𝑉) |
15 | 13, 14 | r19.29a 3218 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑉)) |