MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustex2sym Structured version   Visualization version   GIF version

Theorem ustex2sym 24076
Description: In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than half 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Assertion
Ref Expression
ustex2sym ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉))
Distinct variable groups:   𝑀,π‘ˆ   𝑀,𝑉   𝑀,𝑋

Proof of Theorem ustex2sym
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ustexsym 24075 . . . 4 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑣 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣))
21ad4ant13 748 . . 3 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣))
3 simprl 768 . . . . . 6 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ ◑𝑀 = 𝑀)
4 coss1 5849 . . . . . . . . 9 (𝑀 βŠ† 𝑣 β†’ (𝑀 ∘ 𝑀) βŠ† (𝑣 ∘ 𝑀))
5 coss2 5850 . . . . . . . . 9 (𝑀 βŠ† 𝑣 β†’ (𝑣 ∘ 𝑀) βŠ† (𝑣 ∘ 𝑣))
64, 5sstrd 3987 . . . . . . . 8 (𝑀 βŠ† 𝑣 β†’ (𝑀 ∘ 𝑀) βŠ† (𝑣 ∘ 𝑣))
76ad2antll 726 . . . . . . 7 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ (𝑀 ∘ 𝑀) βŠ† (𝑣 ∘ 𝑣))
8 simpllr 773 . . . . . . 7 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ (𝑣 ∘ 𝑣) βŠ† 𝑉)
97, 8sstrd 3987 . . . . . 6 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ (𝑀 ∘ 𝑀) βŠ† 𝑉)
103, 9jca 511 . . . . 5 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉))
1110ex 412 . . . 4 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) β†’ ((◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣) β†’ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉)))
1211reximdva 3162 . . 3 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) β†’ (βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉)))
132, 12mpd 15 . 2 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉))
14 ustexhalf 24070 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘£ ∈ π‘ˆ (𝑣 ∘ 𝑣) βŠ† 𝑉)
1513, 14r19.29a 3156 1 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3064   βŠ† wss 3943  β—‘ccnv 5668   ∘ ccom 5673  β€˜cfv 6537  UnifOncust 24059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-iota 6489  df-fun 6539  df-fv 6545  df-ust 24060
This theorem is referenced by:  ustex3sym  24077
  Copyright terms: Public domain W3C validator