MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustex2sym Structured version   Visualization version   GIF version

Theorem ustex2sym 23721
Description: In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than half 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.)
Assertion
Ref Expression
ustex2sym ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉))
Distinct variable groups:   𝑀,π‘ˆ   𝑀,𝑉   𝑀,𝑋

Proof of Theorem ustex2sym
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ustexsym 23720 . . . 4 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑣 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣))
21ad4ant13 750 . . 3 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣))
3 simprl 770 . . . . . 6 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ ◑𝑀 = 𝑀)
4 coss1 5856 . . . . . . . . 9 (𝑀 βŠ† 𝑣 β†’ (𝑀 ∘ 𝑀) βŠ† (𝑣 ∘ 𝑀))
5 coss2 5857 . . . . . . . . 9 (𝑀 βŠ† 𝑣 β†’ (𝑣 ∘ 𝑀) βŠ† (𝑣 ∘ 𝑣))
64, 5sstrd 3993 . . . . . . . 8 (𝑀 βŠ† 𝑣 β†’ (𝑀 ∘ 𝑀) βŠ† (𝑣 ∘ 𝑣))
76ad2antll 728 . . . . . . 7 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ (𝑀 ∘ 𝑀) βŠ† (𝑣 ∘ 𝑣))
8 simpllr 775 . . . . . . 7 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ (𝑣 ∘ 𝑣) βŠ† 𝑉)
97, 8sstrd 3993 . . . . . 6 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ (𝑀 ∘ 𝑀) βŠ† 𝑉)
103, 9jca 513 . . . . 5 ((((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) ∧ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣)) β†’ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉))
1110ex 414 . . . 4 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) ∧ 𝑀 ∈ π‘ˆ) β†’ ((◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣) β†’ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉)))
1211reximdva 3169 . . 3 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) β†’ (βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ 𝑀 βŠ† 𝑣) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉)))
132, 12mpd 15 . 2 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) ∧ 𝑣 ∈ π‘ˆ) ∧ (𝑣 ∘ 𝑣) βŠ† 𝑉) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉))
14 ustexhalf 23715 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘£ ∈ π‘ˆ (𝑣 ∘ 𝑣) βŠ† 𝑉)
1513, 14r19.29a 3163 1 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ βˆƒπ‘€ ∈ π‘ˆ (◑𝑀 = 𝑀 ∧ (𝑀 ∘ 𝑀) βŠ† 𝑉))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071   βŠ† wss 3949  β—‘ccnv 5676   ∘ ccom 5681  β€˜cfv 6544  UnifOncust 23704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-ust 23705
This theorem is referenced by:  ustex3sym  23722
  Copyright terms: Public domain W3C validator