Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjALTV3 Structured version   Visualization version   GIF version

Theorem dfdisjALTV3 38671
Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV3 38645. (Contributed by Peter Mazsa, 28-Jul-2021.)
Assertion
Ref Expression
dfdisjALTV3 ( Disj 𝑅 ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅))
Distinct variable group:   𝑢,𝑅,𝑣,𝑥

Proof of Theorem dfdisjALTV3
StepHypRef Expression
1 dfdisjALTV2 38670 . 2 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))
2 cosscnvssid3 38432 . . 3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣))
32anbi1i 623 . 2 (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅))
41, 3bitri 275 1 ( Disj 𝑅 ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wss 3976   class class class wbr 5166   I cid 5592  ccnv 5699  Rel wrel 5705  ccoss 38135   Disj wdisjALTV 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-coss 38367  df-cnvrefrel 38483  df-disjALTV 38661
This theorem is referenced by:  dfeldisj3  38675
  Copyright terms: Public domain W3C validator