Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjALTV3 Structured version   Visualization version   GIF version

Theorem dfdisjALTV3 38714
Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV3 38688. (Contributed by Peter Mazsa, 28-Jul-2021.)
Assertion
Ref Expression
dfdisjALTV3 ( Disj 𝑅 ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅))
Distinct variable group:   𝑢,𝑅,𝑣,𝑥

Proof of Theorem dfdisjALTV3
StepHypRef Expression
1 dfdisjALTV2 38713 . 2 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))
2 cosscnvssid3 38474 . . 3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣))
32anbi1i 624 . 2 (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅))
41, 3bitri 275 1 ( Disj 𝑅 ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wss 3917   class class class wbr 5110   I cid 5535  ccnv 5640  Rel wrel 5646  ccoss 38176   Disj wdisjALTV 38210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-coss 38409  df-cnvrefrel 38525  df-disjALTV 38704
This theorem is referenced by:  dfeldisj3  38718
  Copyright terms: Public domain W3C validator