Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjs3 Structured version   Visualization version   GIF version

Theorem eldisjs3 36397
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
eldisjs3 (𝑅 ∈ Disjs ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑢,𝑅,𝑣,𝑥

Proof of Theorem eldisjs3
StepHypRef Expression
1 eldisjs2 36396 . 2 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ))
2 cosscnvssid3 36156 . . 3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣))
32anbi1i 626 . 2 (( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels ))
41, 3bitri 278 1 (𝑅 ∈ Disjs ↔ (∀𝑢𝑣𝑥((𝑢𝑅𝑥𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wss 3858   class class class wbr 5032   I cid 5429  ccnv 5523  ccoss 35893   Rels crels 35895   Disjs cdisjs 35926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-coss 36099  df-rels 36165  df-ssr 36178  df-cnvrefs 36203  df-cnvrefrels 36204  df-disjss 36376  df-disjs 36377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator