![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphsubrg | Structured version Visualization version GIF version |
Description: The scalar field of a subcomplex pre-Hilbert space is a subring of ℂfld. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphsubrg | ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphsca.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
2 | cphsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2, 1 | cphsca 25201 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 = (ℂfld ↾s 𝐾)) |
4 | cphlvec 25197 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec) | |
5 | 2 | lvecdrng 21085 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing) |
7 | 1, 3, 6 | cphsubrglem 25199 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 = (𝐾 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
8 | 7 | simp3d 1141 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 ‘cfv 6556 (class class class)co 7426 ℂcc 11158 Basecbs 17215 ↾s cress 17244 Scalarcsca 17271 SubRingcsubrg 20553 DivRingcdr 20709 LVecclvec 21082 ℂfldccnfld 21345 ℂPreHilccph 25188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 ax-addf 11239 ax-mulf 11240 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-tpos 8243 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-div 11924 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12613 df-dec 12732 df-uz 12877 df-fz 13541 df-seq 14024 df-exp 14084 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17216 df-ress 17245 df-plusg 17281 df-mulr 17282 df-starv 17283 df-tset 17287 df-ple 17288 df-ds 17290 df-unif 17291 df-0g 17458 df-mgm 18635 df-sgrp 18714 df-mnd 18730 df-grp 18933 df-minusg 18934 df-subg 19119 df-cmn 19782 df-abl 19783 df-mgp 20120 df-rng 20138 df-ur 20167 df-ring 20220 df-cring 20221 df-oppr 20318 df-dvdsr 20341 df-unit 20342 df-subrg 20555 df-drng 20711 df-lvec 21083 df-cnfld 21346 df-phl 21624 df-cph 25190 |
This theorem is referenced by: cphdivcl 25204 cphabscl 25207 cphsqrtcl2 25208 cphsqrtcl3 25209 cphqss 25210 cphclm 25211 cphipcl 25213 4cphipval2 25264 hlprlem 25389 ishl2 25392 |
Copyright terms: Public domain | W3C validator |