MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphphl Structured version   Visualization version   GIF version

Theorem cphphl 25123
Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphphl (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)

Proof of Theorem cphphl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2735 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2735 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 eqid 2735 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2735 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
61, 2, 3, 4, 5iscph 25122 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1145 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))))
87simp1d 1142 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cin 3925  wss 3926  cmpt 5201  cima 5657  cfv 6531  (class class class)co 7405  0cc0 11129  +∞cpnf 11266  [,)cico 13364  csqrt 15252  Basecbs 17228  s cress 17251  Scalarcsca 17274  ·𝑖cip 17276  fldccnfld 21315  PreHilcphl 21584  normcnm 24515  NrmModcnlm 24519  ℂPreHilccph 25118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fv 6539  df-ov 7408  df-cph 25120
This theorem is referenced by:  cphlvec  25127  cphcjcl  25135  cphipcl  25143  cphnmf  25147  cphipcj  25151  cphorthcom  25153  cphip0l  25154  cphip0r  25155  cphipeq0  25156  cphdir  25157  cphdi  25158  cph2di  25159  cphsubdir  25160  cphsubdi  25161  cph2subdi  25162  cphass  25163  cphassr  25164  ipcau  25190  nmparlem  25191  ipcn  25198  cphsscph  25203  hlphl  25317  cmscsscms  25325  bncssbn  25326  pjthlem2  25390
  Copyright terms: Public domain W3C validator