| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphphl | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphphl | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2735 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2735 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2735 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | 1, 2, 3, 4, 5 | iscph 25122 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
| 7 | 6 | simp1bi 1145 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))))) |
| 8 | 7 | simp1d 1142 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 ↦ cmpt 5201 “ cima 5657 ‘cfv 6531 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 [,)cico 13364 √csqrt 15252 Basecbs 17228 ↾s cress 17251 Scalarcsca 17274 ·𝑖cip 17276 ℂfldccnfld 21315 PreHilcphl 21584 normcnm 24515 NrmModcnlm 24519 ℂPreHilccph 25118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fv 6539 df-ov 7408 df-cph 25120 |
| This theorem is referenced by: cphlvec 25127 cphcjcl 25135 cphipcl 25143 cphnmf 25147 cphipcj 25151 cphorthcom 25153 cphip0l 25154 cphip0r 25155 cphipeq0 25156 cphdir 25157 cphdi 25158 cph2di 25159 cphsubdir 25160 cphsubdi 25161 cph2subdi 25162 cphass 25163 cphassr 25164 ipcau 25190 nmparlem 25191 ipcn 25198 cphsscph 25203 hlphl 25317 cmscsscms 25325 bncssbn 25326 pjthlem2 25390 |
| Copyright terms: Public domain | W3C validator |