| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphphl | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphphl | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2731 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2731 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | 1, 2, 3, 4, 5 | iscph 25095 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
| 7 | 6 | simp1bi 1145 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))))) |
| 8 | 7 | simp1d 1142 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 ↦ cmpt 5172 “ cima 5619 ‘cfv 6481 (class class class)co 7346 0cc0 11003 +∞cpnf 11140 [,)cico 13244 √csqrt 15137 Basecbs 17117 ↾s cress 17138 Scalarcsca 17161 ·𝑖cip 17163 ℂfldccnfld 21289 PreHilcphl 21559 normcnm 24489 NrmModcnlm 24493 ℂPreHilccph 25091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 df-ov 7349 df-cph 25093 |
| This theorem is referenced by: cphlvec 25100 cphcjcl 25108 cphipcl 25116 cphnmf 25120 cphipcj 25124 cphorthcom 25126 cphip0l 25127 cphip0r 25128 cphipeq0 25129 cphdir 25130 cphdi 25131 cph2di 25132 cphsubdir 25133 cphsubdi 25134 cph2subdi 25135 cphass 25136 cphassr 25137 ipcau 25163 nmparlem 25164 ipcn 25171 cphsscph 25176 hlphl 25290 cmscsscms 25298 bncssbn 25299 pjthlem2 25363 |
| Copyright terms: Public domain | W3C validator |