MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphphl Structured version   Visualization version   GIF version

Theorem cphphl 25121
Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphphl (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)

Proof of Theorem cphphl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2735 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2735 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 eqid 2735 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2735 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
61, 2, 3, 4, 5iscph 25120 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1145 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))))
87simp1d 1142 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cin 3925  wss 3926  cmpt 5201  cima 5657  cfv 6530  (class class class)co 7403  0cc0 11127  +∞cpnf 11264  [,)cico 13362  csqrt 15250  Basecbs 17226  s cress 17249  Scalarcsca 17272  ·𝑖cip 17274  fldccnfld 21313  PreHilcphl 21582  normcnm 24513  NrmModcnlm 24517  ℂPreHilccph 25116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fv 6538  df-ov 7406  df-cph 25118
This theorem is referenced by:  cphlvec  25125  cphcjcl  25133  cphipcl  25141  cphnmf  25145  cphipcj  25149  cphorthcom  25151  cphip0l  25152  cphip0r  25153  cphipeq0  25154  cphdir  25155  cphdi  25156  cph2di  25157  cphsubdir  25158  cphsubdi  25159  cph2subdi  25160  cphass  25161  cphassr  25162  ipcau  25188  nmparlem  25189  ipcn  25196  cphsscph  25201  hlphl  25315  cmscsscms  25323  bncssbn  25324  pjthlem2  25388
  Copyright terms: Public domain W3C validator