MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphphl Structured version   Visualization version   GIF version

Theorem cphphl 25224
Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphphl (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)

Proof of Theorem cphphl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2740 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2740 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 eqid 2740 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2740 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
61, 2, 3, 4, 5iscph 25223 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1145 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))))
87simp1d 1142 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976  cmpt 5249  cima 5703  cfv 6573  (class class class)co 7448  0cc0 11184  +∞cpnf 11321  [,)cico 13409  csqrt 15282  Basecbs 17258  s cress 17287  Scalarcsca 17314  ·𝑖cip 17316  fldccnfld 21387  PreHilcphl 21665  normcnm 24610  NrmModcnlm 24614  ℂPreHilccph 25219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fv 6581  df-ov 7451  df-cph 25221
This theorem is referenced by:  cphlvec  25228  cphcjcl  25236  cphipcl  25244  cphnmf  25248  cphipcj  25252  cphorthcom  25254  cphip0l  25255  cphip0r  25256  cphipeq0  25257  cphdir  25258  cphdi  25259  cph2di  25260  cphsubdir  25261  cphsubdi  25262  cph2subdi  25263  cphass  25264  cphassr  25265  ipcau  25291  nmparlem  25292  ipcn  25299  cphsscph  25304  hlphl  25418  cmscsscms  25426  bncssbn  25427  pjthlem2  25491
  Copyright terms: Public domain W3C validator