MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphphl Structured version   Visualization version   GIF version

Theorem cphphl 25087
Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphphl (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)

Proof of Theorem cphphl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2729 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 eqid 2729 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2729 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
61, 2, 3, 4, 5iscph 25086 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1145 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))))
87simp1d 1142 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cin 3904  wss 3905  cmpt 5176  cima 5626  cfv 6486  (class class class)co 7353  0cc0 11028  +∞cpnf 11165  [,)cico 13268  csqrt 15158  Basecbs 17138  s cress 17159  Scalarcsca 17182  ·𝑖cip 17184  fldccnfld 21279  PreHilcphl 21549  normcnm 24480  NrmModcnlm 24484  ℂPreHilccph 25082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fv 6494  df-ov 7356  df-cph 25084
This theorem is referenced by:  cphlvec  25091  cphcjcl  25099  cphipcl  25107  cphnmf  25111  cphipcj  25115  cphorthcom  25117  cphip0l  25118  cphip0r  25119  cphipeq0  25120  cphdir  25121  cphdi  25122  cph2di  25123  cphsubdir  25124  cphsubdi  25125  cph2subdi  25126  cphass  25127  cphassr  25128  ipcau  25154  nmparlem  25155  ipcn  25162  cphsscph  25167  hlphl  25281  cmscsscms  25289  bncssbn  25290  pjthlem2  25354
  Copyright terms: Public domain W3C validator