![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphphl | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
cphphl | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2740 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
3 | eqid 2740 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
4 | eqid 2740 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2740 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | 1, 2, 3, 4, 5 | iscph 25223 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
7 | 6 | simp1bi 1145 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))))) |
8 | 7 | simp1d 1142 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 ↦ cmpt 5249 “ cima 5703 ‘cfv 6573 (class class class)co 7448 0cc0 11184 +∞cpnf 11321 [,)cico 13409 √csqrt 15282 Basecbs 17258 ↾s cress 17287 Scalarcsca 17314 ·𝑖cip 17316 ℂfldccnfld 21387 PreHilcphl 21665 normcnm 24610 NrmModcnlm 24614 ℂPreHilccph 25219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fv 6581 df-ov 7451 df-cph 25221 |
This theorem is referenced by: cphlvec 25228 cphcjcl 25236 cphipcl 25244 cphnmf 25248 cphipcj 25252 cphorthcom 25254 cphip0l 25255 cphip0r 25256 cphipeq0 25257 cphdir 25258 cphdi 25259 cph2di 25260 cphsubdir 25261 cphsubdi 25262 cph2subdi 25263 cphass 25264 cphassr 25265 ipcau 25291 nmparlem 25292 ipcn 25299 cphsscph 25304 hlphl 25418 cmscsscms 25426 bncssbn 25427 pjthlem2 25491 |
Copyright terms: Public domain | W3C validator |