| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphphl | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphphl | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2735 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2735 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2735 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | 1, 2, 3, 4, 5 | iscph 25120 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
| 7 | 6 | simp1bi 1145 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))))) |
| 8 | 7 | simp1d 1142 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 ↦ cmpt 5201 “ cima 5657 ‘cfv 6530 (class class class)co 7403 0cc0 11127 +∞cpnf 11264 [,)cico 13362 √csqrt 15250 Basecbs 17226 ↾s cress 17249 Scalarcsca 17272 ·𝑖cip 17274 ℂfldccnfld 21313 PreHilcphl 21582 normcnm 24513 NrmModcnlm 24517 ℂPreHilccph 25116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fv 6538 df-ov 7406 df-cph 25118 |
| This theorem is referenced by: cphlvec 25125 cphcjcl 25133 cphipcl 25141 cphnmf 25145 cphipcj 25149 cphorthcom 25151 cphip0l 25152 cphip0r 25153 cphipeq0 25154 cphdir 25155 cphdi 25156 cph2di 25157 cphsubdir 25158 cphsubdi 25159 cph2subdi 25160 cphass 25161 cphassr 25162 ipcau 25188 nmparlem 25189 ipcn 25196 cphsscph 25201 hlphl 25315 cmscsscms 25323 bncssbn 25324 pjthlem2 25388 |
| Copyright terms: Public domain | W3C validator |