| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphphl | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphphl | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2733 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2733 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 4 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2733 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | 1, 2, 3, 4, 5 | iscph 25098 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
| 7 | 6 | simp1bi 1145 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))))) |
| 8 | 7 | simp1d 1142 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 ↦ cmpt 5174 “ cima 5622 ‘cfv 6486 (class class class)co 7352 0cc0 11013 +∞cpnf 11150 [,)cico 13249 √csqrt 15142 Basecbs 17122 ↾s cress 17143 Scalarcsca 17166 ·𝑖cip 17168 ℂfldccnfld 21293 PreHilcphl 21563 normcnm 24492 NrmModcnlm 24496 ℂPreHilccph 25094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fv 6494 df-ov 7355 df-cph 25096 |
| This theorem is referenced by: cphlvec 25103 cphcjcl 25111 cphipcl 25119 cphnmf 25123 cphipcj 25127 cphorthcom 25129 cphip0l 25130 cphip0r 25131 cphipeq0 25132 cphdir 25133 cphdi 25134 cph2di 25135 cphsubdir 25136 cphsubdi 25137 cph2subdi 25138 cphass 25139 cphassr 25140 ipcau 25166 nmparlem 25167 ipcn 25174 cphsscph 25179 hlphl 25293 cmscsscms 25301 bncssbn 25302 pjthlem2 25366 |
| Copyright terms: Public domain | W3C validator |