MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphphl Structured version   Visualization version   GIF version

Theorem cphphl 25096
Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphphl (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)

Proof of Theorem cphphl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2731 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2731 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 eqid 2731 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2731 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
61, 2, 3, 4, 5iscph 25095 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1145 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))))
87simp1d 1142 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cin 3901  wss 3902  cmpt 5172  cima 5619  cfv 6481  (class class class)co 7346  0cc0 11003  +∞cpnf 11140  [,)cico 13244  csqrt 15137  Basecbs 17117  s cress 17138  Scalarcsca 17161  ·𝑖cip 17163  fldccnfld 21289  PreHilcphl 21559  normcnm 24489  NrmModcnlm 24493  ℂPreHilccph 25091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fv 6489  df-ov 7349  df-cph 25093
This theorem is referenced by:  cphlvec  25100  cphcjcl  25108  cphipcl  25116  cphnmf  25120  cphipcj  25124  cphorthcom  25126  cphip0l  25127  cphip0r  25128  cphipeq0  25129  cphdir  25130  cphdi  25131  cph2di  25132  cphsubdir  25133  cphsubdi  25134  cph2subdi  25135  cphass  25136  cphassr  25137  ipcau  25163  nmparlem  25164  ipcn  25171  cphsscph  25176  hlphl  25290  cmscsscms  25298  bncssbn  25299  pjthlem2  25363
  Copyright terms: Public domain W3C validator