Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphlmod | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
cphlmod | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphnlm 24069 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
2 | nlmlmod 23576 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 LModclmod 19899 NrmModcnlm 23478 ℂPreHilccph 24063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-xp 5557 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fv 6388 df-ov 7216 df-nlm 23484 df-cph 24065 |
This theorem is referenced by: cphclm 24086 cph2ass 24110 cphtcphnm 24127 nmparlem 24136 cphipval2 24138 4cphipval2 24139 cphipval 24140 cphsscph 24148 cmscsscms 24270 minveclem1 24321 minveclem2 24323 minveclem4 24329 minveclem6 24331 pjthlem1 24334 pjthlem2 24335 |
Copyright terms: Public domain | W3C validator |