MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphlmod Structured version   Visualization version   GIF version

Theorem cphlmod 25104
Description: A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphlmod (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)

Proof of Theorem cphlmod
StepHypRef Expression
1 cphnlm 25102 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
2 nlmlmod 24596 . 2 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
31, 2syl 17 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  LModclmod 20797  NrmModcnlm 24498  ℂPreHilccph 25096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fv 6496  df-ov 7357  df-nlm 24504  df-cph 25098
This theorem is referenced by:  cphclm  25119  cph2ass  25143  cphtcphnm  25160  nmparlem  25169  cphipval2  25171  4cphipval2  25172  cphipval  25173  cphsscph  25181  cmscsscms  25303  minveclem1  25354  minveclem2  25356  minveclem4  25362  minveclem6  25364  pjthlem1  25367  pjthlem2  25368
  Copyright terms: Public domain W3C validator