MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphlmod Structured version   Visualization version   GIF version

Theorem cphlmod 24418
Description: A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphlmod (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)

Proof of Theorem cphlmod
StepHypRef Expression
1 cphnlm 24416 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
2 nlmlmod 23922 . 2 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
31, 2syl 17 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  LModclmod 20203  NrmModcnlm 23816  ℂPreHilccph 24410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-nul 5244
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rab 3404  df-v 3442  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-xp 5613  df-cnv 5615  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fv 6473  df-ov 7319  df-nlm 23822  df-cph 24412
This theorem is referenced by:  cphclm  24433  cph2ass  24457  cphtcphnm  24474  nmparlem  24483  cphipval2  24485  4cphipval2  24486  cphipval  24487  cphsscph  24495  cmscsscms  24617  minveclem1  24668  minveclem2  24670  minveclem4  24676  minveclem6  24678  pjthlem1  24681  pjthlem2  24682
  Copyright terms: Public domain W3C validator