| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphlmod | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphlmod | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnlm 25206 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
| 2 | nlmlmod 24699 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 LModclmod 20858 NrmModcnlm 24593 ℂPreHilccph 25200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fv 6569 df-ov 7434 df-nlm 24599 df-cph 25202 |
| This theorem is referenced by: cphclm 25223 cph2ass 25247 cphtcphnm 25264 nmparlem 25273 cphipval2 25275 4cphipval2 25276 cphipval 25277 cphsscph 25285 cmscsscms 25407 minveclem1 25458 minveclem2 25460 minveclem4 25466 minveclem6 25468 pjthlem1 25471 pjthlem2 25472 |
| Copyright terms: Public domain | W3C validator |