| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphlmod | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphlmod | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnlm 25102 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
| 2 | nlmlmod 24596 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 LModclmod 20797 NrmModcnlm 24498 ℂPreHilccph 25096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fv 6496 df-ov 7357 df-nlm 24504 df-cph 25098 |
| This theorem is referenced by: cphclm 25119 cph2ass 25143 cphtcphnm 25160 nmparlem 25169 cphipval2 25171 4cphipval2 25172 cphipval 25173 cphsscph 25181 cmscsscms 25303 minveclem1 25354 minveclem2 25356 minveclem4 25362 minveclem6 25364 pjthlem1 25367 pjthlem2 25368 |
| Copyright terms: Public domain | W3C validator |