MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsubrglem Structured version   Visualization version   GIF version

Theorem cphsubrglem 25188
Description: Lemma for cphsubrg 25191. (Contributed by Mario Carneiro, 9-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphsubrglem (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))

Proof of Theorem cphsubrglem
StepHypRef Expression
1 cphsubrglem.1 . . 3 (𝜑𝐹 = (ℂflds 𝐴))
2 cphsubrglem.k . . . . . 6 𝐾 = (Base‘𝐹)
31fveq2d 6904 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐴)))
4 cphsubrglem.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
5 drngring 20671 . . . . . . . . . . . 12 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ Ring)
71, 6eqeltrrd 2826 . . . . . . . . . 10 (𝜑 → (ℂflds 𝐴) ∈ Ring)
8 eqid 2725 . . . . . . . . . . 11 (Base‘(ℂflds 𝐴)) = (Base‘(ℂflds 𝐴))
9 eqid 2725 . . . . . . . . . . 11 (0g‘(ℂflds 𝐴)) = (0g‘(ℂflds 𝐴))
108, 9ring0cl 20241 . . . . . . . . . 10 ((ℂflds 𝐴) ∈ Ring → (0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)))
11 reldmress 17239 . . . . . . . . . . 11 Rel dom ↾s
12 eqid 2725 . . . . . . . . . . 11 (ℂflds 𝐴) = (ℂflds 𝐴)
1311, 12, 8elbasov 17215 . . . . . . . . . 10 ((0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)) → (ℂfld ∈ V ∧ 𝐴 ∈ V))
147, 10, 133syl 18 . . . . . . . . 9 (𝜑 → (ℂfld ∈ V ∧ 𝐴 ∈ V))
1514simprd 494 . . . . . . . 8 (𝜑𝐴 ∈ V)
16 cnfldbas 21339 . . . . . . . . 9 ℂ = (Base‘ℂfld)
1712, 16ressbas 17243 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
1815, 17syl 17 . . . . . . 7 (𝜑 → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
193, 18eqtr4d 2768 . . . . . 6 (𝜑 → (Base‘𝐹) = (𝐴 ∩ ℂ))
202, 19eqtrid 2777 . . . . 5 (𝜑𝐾 = (𝐴 ∩ ℂ))
2120oveq2d 7439 . . . 4 (𝜑 → (ℂflds 𝐾) = (ℂflds (𝐴 ∩ ℂ)))
2216ressinbas 17254 . . . . 5 (𝐴 ∈ V → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2315, 22syl 17 . . . 4 (𝜑 → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2421, 23eqtr4d 2768 . . 3 (𝜑 → (ℂflds 𝐾) = (ℂflds 𝐴))
251, 24eqtr4d 2768 . 2 (𝜑𝐹 = (ℂflds 𝐾))
2625, 6eqeltrrd 2826 . . . 4 (𝜑 → (ℂflds 𝐾) ∈ Ring)
27 cnring 21374 . . . 4 fld ∈ Ring
2826, 27jctil 518 . . 3 (𝜑 → (ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring))
2912, 16ressbasss 17247 . . . . . 6 (Base‘(ℂflds 𝐴)) ⊆ ℂ
303, 29eqsstrdi 4033 . . . . 5 (𝜑 → (Base‘𝐹) ⊆ ℂ)
312, 30eqsstrid 4027 . . . 4 (𝜑𝐾 ⊆ ℂ)
32 eqid 2725 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
33 eqid 2725 . . . . . . . . . 10 (1r𝐹) = (1r𝐹)
3432, 33drngunz 20683 . . . . . . . . 9 (𝐹 ∈ DivRing → (1r𝐹) ≠ (0g𝐹))
354, 34syl 17 . . . . . . . 8 (𝜑 → (1r𝐹) ≠ (0g𝐹))
3625fveq2d 6904 . . . . . . . . 9 (𝜑 → (0g𝐹) = (0g‘(ℂflds 𝐾)))
37 ringgrp 20216 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ Grp)
3827, 37mp1i 13 . . . . . . . . . . 11 (𝜑 → ℂfld ∈ Grp)
39 ringgrp 20216 . . . . . . . . . . . 12 ((ℂflds 𝐾) ∈ Ring → (ℂflds 𝐾) ∈ Grp)
4026, 39syl 17 . . . . . . . . . . 11 (𝜑 → (ℂflds 𝐾) ∈ Grp)
4116issubg 19115 . . . . . . . . . . 11 (𝐾 ∈ (SubGrp‘ℂfld) ↔ (ℂfld ∈ Grp ∧ 𝐾 ⊆ ℂ ∧ (ℂflds 𝐾) ∈ Grp))
4238, 31, 40, 41syl3anbrc 1340 . . . . . . . . . 10 (𝜑𝐾 ∈ (SubGrp‘ℂfld))
43 eqid 2725 . . . . . . . . . . 11 (ℂflds 𝐾) = (ℂflds 𝐾)
44 cnfld0 21376 . . . . . . . . . . 11 0 = (0g‘ℂfld)
4543, 44subg0 19121 . . . . . . . . . 10 (𝐾 ∈ (SubGrp‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
4642, 45syl 17 . . . . . . . . 9 (𝜑 → 0 = (0g‘(ℂflds 𝐾)))
4736, 46eqtr4d 2768 . . . . . . . 8 (𝜑 → (0g𝐹) = 0)
4835, 47neeqtrd 2999 . . . . . . 7 (𝜑 → (1r𝐹) ≠ 0)
4948neneqd 2934 . . . . . 6 (𝜑 → ¬ (1r𝐹) = 0)
502, 33ringidcl 20240 . . . . . . . . . . . 12 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
516, 50syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝐹) ∈ 𝐾)
5231, 51sseldd 3979 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ ℂ)
5352sqvald 14157 . . . . . . . . 9 (𝜑 → ((1r𝐹)↑2) = ((1r𝐹) · (1r𝐹)))
5425fveq2d 6904 . . . . . . . . . 10 (𝜑 → (1r𝐹) = (1r‘(ℂflds 𝐾)))
5554oveq1d 7438 . . . . . . . . 9 (𝜑 → ((1r𝐹) · (1r𝐹)) = ((1r‘(ℂflds 𝐾)) · (1r𝐹)))
5625fveq2d 6904 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐾)))
572, 56eqtrid 2777 . . . . . . . . . . 11 (𝜑𝐾 = (Base‘(ℂflds 𝐾)))
5851, 57eleqtrd 2827 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ (Base‘(ℂflds 𝐾)))
59 eqid 2725 . . . . . . . . . . 11 (Base‘(ℂflds 𝐾)) = (Base‘(ℂflds 𝐾))
602fvexi 6914 . . . . . . . . . . . 12 𝐾 ∈ V
61 cnfldmul 21343 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
6243, 61ressmulr 17316 . . . . . . . . . . . 12 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
6360, 62ax-mp 5 . . . . . . . . . . 11 · = (.r‘(ℂflds 𝐾))
64 eqid 2725 . . . . . . . . . . 11 (1r‘(ℂflds 𝐾)) = (1r‘(ℂflds 𝐾))
6559, 63, 64ringlidm 20243 . . . . . . . . . 10 (((ℂflds 𝐾) ∈ Ring ∧ (1r𝐹) ∈ (Base‘(ℂflds 𝐾))) → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6626, 58, 65syl2anc 582 . . . . . . . . 9 (𝜑 → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6753, 55, 663eqtrd 2769 . . . . . . . 8 (𝜑 → ((1r𝐹)↑2) = (1r𝐹))
68 sq01 14237 . . . . . . . . 9 ((1r𝐹) ∈ ℂ → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
6952, 68syl 17 . . . . . . . 8 (𝜑 → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
7067, 69mpbid 231 . . . . . . 7 (𝜑 → ((1r𝐹) = 0 ∨ (1r𝐹) = 1))
7170ord 862 . . . . . 6 (𝜑 → (¬ (1r𝐹) = 0 → (1r𝐹) = 1))
7249, 71mpd 15 . . . . 5 (𝜑 → (1r𝐹) = 1)
7372, 51eqeltrrd 2826 . . . 4 (𝜑 → 1 ∈ 𝐾)
7431, 73jca 510 . . 3 (𝜑 → (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾))
75 cnfld1 21377 . . . 4 1 = (1r‘ℂfld)
7616, 75issubrg 20550 . . 3 (𝐾 ∈ (SubRing‘ℂfld) ↔ ((ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring) ∧ (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾)))
7728, 74, 76sylanbrc 581 . 2 (𝜑𝐾 ∈ (SubRing‘ℂfld))
7825, 20, 773jca 1125 1 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2929  Vcvv 3461  cin 3945  wss 3946  cfv 6553  (class class class)co 7423  cc 11152  0cc0 11154  1c1 11155   · cmul 11159  2c2 12314  cexp 14076  Basecbs 17208  s cress 17237  .rcmulr 17262  0gc0g 17449  Grpcgrp 18923  SubGrpcsubg 19109  1rcur 20159  Ringcrg 20211  SubRingcsubrg 20546  DivRingcdr 20664  fldccnfld 21335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-addf 11233  ax-mulf 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-tpos 8240  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-z 12606  df-dec 12725  df-uz 12870  df-fz 13534  df-seq 14017  df-exp 14077  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-grp 18926  df-minusg 18927  df-subg 19112  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-ring 20213  df-cring 20214  df-oppr 20311  df-dvdsr 20334  df-unit 20335  df-subrg 20548  df-drng 20666  df-cnfld 21336
This theorem is referenced by:  cphreccllem  25189  cphsubrg  25191  phclm  25243  tcphcph  25248
  Copyright terms: Public domain W3C validator