Proof of Theorem cphsubrglem
Step | Hyp | Ref
| Expression |
1 | | cphsubrglem.1 |
. . 3
⊢ (𝜑 → 𝐹 = (ℂfld
↾s 𝐴)) |
2 | | cphsubrglem.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝐹) |
3 | 1 | fveq2d 6760 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝐹) =
(Base‘(ℂfld ↾s 𝐴))) |
4 | | cphsubrglem.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ DivRing) |
5 | | drngring 19913 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ Ring) |
7 | 1, 6 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂfld
↾s 𝐴)
∈ Ring) |
8 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘(ℂfld ↾s 𝐴)) = (Base‘(ℂfld
↾s 𝐴)) |
9 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘(ℂfld ↾s 𝐴)) =
(0g‘(ℂfld ↾s 𝐴)) |
10 | 8, 9 | ring0cl 19723 |
. . . . . . . . . 10
⊢
((ℂfld ↾s 𝐴) ∈ Ring →
(0g‘(ℂfld ↾s 𝐴)) ∈
(Base‘(ℂfld ↾s 𝐴))) |
11 | | reldmress 16869 |
. . . . . . . . . . 11
⊢ Rel dom
↾s |
12 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(ℂfld ↾s 𝐴) = (ℂfld
↾s 𝐴) |
13 | 11, 12, 8 | elbasov 16847 |
. . . . . . . . . 10
⊢
((0g‘(ℂfld ↾s 𝐴)) ∈
(Base‘(ℂfld ↾s 𝐴)) → (ℂfld ∈ V
∧ 𝐴 ∈
V)) |
14 | 7, 10, 13 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (ℂfld
∈ V ∧ 𝐴 ∈
V)) |
15 | 14 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ V) |
16 | | cnfldbas 20514 |
. . . . . . . . 9
⊢ ℂ =
(Base‘ℂfld) |
17 | 12, 16 | ressbas 16873 |
. . . . . . . 8
⊢ (𝐴 ∈ V → (𝐴 ∩ ℂ) =
(Base‘(ℂfld ↾s 𝐴))) |
18 | 15, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ ℂ) =
(Base‘(ℂfld ↾s 𝐴))) |
19 | 3, 18 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → (Base‘𝐹) = (𝐴 ∩ ℂ)) |
20 | 2, 19 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → 𝐾 = (𝐴 ∩ ℂ)) |
21 | 20 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → (ℂfld
↾s 𝐾) =
(ℂfld ↾s (𝐴 ∩ ℂ))) |
22 | 16 | ressinbas 16881 |
. . . . 5
⊢ (𝐴 ∈ V →
(ℂfld ↾s 𝐴) = (ℂfld
↾s (𝐴
∩ ℂ))) |
23 | 15, 22 | syl 17 |
. . . 4
⊢ (𝜑 → (ℂfld
↾s 𝐴) =
(ℂfld ↾s (𝐴 ∩ ℂ))) |
24 | 21, 23 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → (ℂfld
↾s 𝐾) =
(ℂfld ↾s 𝐴)) |
25 | 1, 24 | eqtr4d 2781 |
. 2
⊢ (𝜑 → 𝐹 = (ℂfld
↾s 𝐾)) |
26 | 25, 6 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (ℂfld
↾s 𝐾)
∈ Ring) |
27 | | cnring 20532 |
. . . 4
⊢
ℂfld ∈ Ring |
28 | 26, 27 | jctil 519 |
. . 3
⊢ (𝜑 → (ℂfld
∈ Ring ∧ (ℂfld ↾s 𝐾) ∈ Ring)) |
29 | 12, 16 | ressbasss 16876 |
. . . . . 6
⊢
(Base‘(ℂfld ↾s 𝐴)) ⊆ ℂ |
30 | 3, 29 | eqsstrdi 3971 |
. . . . 5
⊢ (𝜑 → (Base‘𝐹) ⊆
ℂ) |
31 | 2, 30 | eqsstrid 3965 |
. . . 4
⊢ (𝜑 → 𝐾 ⊆ ℂ) |
32 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝐹) = (0g‘𝐹) |
33 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1r‘𝐹) = (1r‘𝐹) |
34 | 32, 33 | drngunz 19921 |
. . . . . . . . 9
⊢ (𝐹 ∈ DivRing →
(1r‘𝐹)
≠ (0g‘𝐹)) |
35 | 4, 34 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1r‘𝐹) ≠
(0g‘𝐹)) |
36 | 25 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝐹) =
(0g‘(ℂfld ↾s 𝐾))) |
37 | | ringgrp 19703 |
. . . . . . . . . . . 12
⊢
(ℂfld ∈ Ring → ℂfld ∈
Grp) |
38 | 27, 37 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → ℂfld
∈ Grp) |
39 | | ringgrp 19703 |
. . . . . . . . . . . 12
⊢
((ℂfld ↾s 𝐾) ∈ Ring → (ℂfld
↾s 𝐾)
∈ Grp) |
40 | 26, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂfld
↾s 𝐾)
∈ Grp) |
41 | 16 | issubg 18670 |
. . . . . . . . . . 11
⊢ (𝐾 ∈
(SubGrp‘ℂfld) ↔ (ℂfld ∈ Grp
∧ 𝐾 ⊆ ℂ
∧ (ℂfld ↾s 𝐾) ∈ Grp)) |
42 | 38, 31, 40, 41 | syl3anbrc 1341 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
(SubGrp‘ℂfld)) |
43 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(ℂfld ↾s 𝐾) = (ℂfld
↾s 𝐾) |
44 | | cnfld0 20534 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘ℂfld) |
45 | 43, 44 | subg0 18676 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(SubGrp‘ℂfld) → 0 =
(0g‘(ℂfld ↾s 𝐾))) |
46 | 42, 45 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 =
(0g‘(ℂfld ↾s 𝐾))) |
47 | 36, 46 | eqtr4d 2781 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝐹) = 0) |
48 | 35, 47 | neeqtrd 3012 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝐹) ≠ 0) |
49 | 48 | neneqd 2947 |
. . . . . 6
⊢ (𝜑 → ¬
(1r‘𝐹) =
0) |
50 | 2, 33 | ringidcl 19722 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ Ring →
(1r‘𝐹)
∈ 𝐾) |
51 | 6, 50 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
52 | 31, 51 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝐹) ∈
ℂ) |
53 | 52 | sqvald 13789 |
. . . . . . . . 9
⊢ (𝜑 →
((1r‘𝐹)↑2) = ((1r‘𝐹) ·
(1r‘𝐹))) |
54 | 25 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝐹) =
(1r‘(ℂfld ↾s 𝐾))) |
55 | 54 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝜑 →
((1r‘𝐹)
· (1r‘𝐹)) =
((1r‘(ℂfld ↾s 𝐾)) ·
(1r‘𝐹))) |
56 | 25 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝐹) =
(Base‘(ℂfld ↾s 𝐾))) |
57 | 2, 56 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 = (Base‘(ℂfld
↾s 𝐾))) |
58 | 51, 57 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝐹) ∈
(Base‘(ℂfld ↾s 𝐾))) |
59 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘(ℂfld ↾s 𝐾)) = (Base‘(ℂfld
↾s 𝐾)) |
60 | 2 | fvexi 6770 |
. . . . . . . . . . . 12
⊢ 𝐾 ∈ V |
61 | | cnfldmul 20516 |
. . . . . . . . . . . . 13
⊢ ·
= (.r‘ℂfld) |
62 | 43, 61 | ressmulr 16943 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ V → · =
(.r‘(ℂfld ↾s 𝐾))) |
63 | 60, 62 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ·
= (.r‘(ℂfld ↾s 𝐾)) |
64 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(1r‘(ℂfld ↾s 𝐾)) =
(1r‘(ℂfld ↾s 𝐾)) |
65 | 59, 63, 64 | ringlidm 19725 |
. . . . . . . . . 10
⊢
(((ℂfld ↾s 𝐾) ∈ Ring ∧
(1r‘𝐹)
∈ (Base‘(ℂfld ↾s 𝐾))) →
((1r‘(ℂfld ↾s 𝐾)) ·
(1r‘𝐹)) =
(1r‘𝐹)) |
66 | 26, 58, 65 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 →
((1r‘(ℂfld ↾s 𝐾)) ·
(1r‘𝐹)) =
(1r‘𝐹)) |
67 | 53, 55, 66 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (𝜑 →
((1r‘𝐹)↑2) = (1r‘𝐹)) |
68 | | sq01 13868 |
. . . . . . . . 9
⊢
((1r‘𝐹) ∈ ℂ →
(((1r‘𝐹)↑2) = (1r‘𝐹) ↔
((1r‘𝐹) =
0 ∨ (1r‘𝐹) = 1))) |
69 | 52, 68 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(((1r‘𝐹)↑2) = (1r‘𝐹) ↔
((1r‘𝐹) =
0 ∨ (1r‘𝐹) = 1))) |
70 | 67, 69 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 →
((1r‘𝐹) =
0 ∨ (1r‘𝐹) = 1)) |
71 | 70 | ord 860 |
. . . . . 6
⊢ (𝜑 → (¬
(1r‘𝐹) = 0
→ (1r‘𝐹) = 1)) |
72 | 49, 71 | mpd 15 |
. . . . 5
⊢ (𝜑 → (1r‘𝐹) = 1) |
73 | 72, 51 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → 1 ∈ 𝐾) |
74 | 31, 73 | jca 511 |
. . 3
⊢ (𝜑 → (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾)) |
75 | | cnfld1 20535 |
. . . 4
⊢ 1 =
(1r‘ℂfld) |
76 | 16, 75 | issubrg 19939 |
. . 3
⊢ (𝐾 ∈
(SubRing‘ℂfld) ↔ ((ℂfld ∈
Ring ∧ (ℂfld ↾s 𝐾) ∈ Ring) ∧ (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾))) |
77 | 28, 74, 76 | sylanbrc 582 |
. 2
⊢ (𝜑 → 𝐾 ∈
(SubRing‘ℂfld)) |
78 | 25, 20, 77 | 3jca 1126 |
1
⊢ (𝜑 → (𝐹 = (ℂfld
↾s 𝐾)
∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈
(SubRing‘ℂfld))) |