MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsubrglem Structured version   Visualization version   GIF version

Theorem cphsubrglem 25225
Description: Lemma for cphsubrg 25228. (Contributed by Mario Carneiro, 9-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphsubrglem (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))

Proof of Theorem cphsubrglem
StepHypRef Expression
1 cphsubrglem.1 . . 3 (𝜑𝐹 = (ℂflds 𝐴))
2 cphsubrglem.k . . . . . 6 𝐾 = (Base‘𝐹)
31fveq2d 6911 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐴)))
4 cphsubrglem.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
5 drngring 20753 . . . . . . . . . . . 12 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ Ring)
71, 6eqeltrrd 2840 . . . . . . . . . 10 (𝜑 → (ℂflds 𝐴) ∈ Ring)
8 eqid 2735 . . . . . . . . . . 11 (Base‘(ℂflds 𝐴)) = (Base‘(ℂflds 𝐴))
9 eqid 2735 . . . . . . . . . . 11 (0g‘(ℂflds 𝐴)) = (0g‘(ℂflds 𝐴))
108, 9ring0cl 20281 . . . . . . . . . 10 ((ℂflds 𝐴) ∈ Ring → (0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)))
11 reldmress 17276 . . . . . . . . . . 11 Rel dom ↾s
12 eqid 2735 . . . . . . . . . . 11 (ℂflds 𝐴) = (ℂflds 𝐴)
1311, 12, 8elbasov 17252 . . . . . . . . . 10 ((0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)) → (ℂfld ∈ V ∧ 𝐴 ∈ V))
147, 10, 133syl 18 . . . . . . . . 9 (𝜑 → (ℂfld ∈ V ∧ 𝐴 ∈ V))
1514simprd 495 . . . . . . . 8 (𝜑𝐴 ∈ V)
16 cnfldbas 21386 . . . . . . . . 9 ℂ = (Base‘ℂfld)
1712, 16ressbas 17280 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
1815, 17syl 17 . . . . . . 7 (𝜑 → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
193, 18eqtr4d 2778 . . . . . 6 (𝜑 → (Base‘𝐹) = (𝐴 ∩ ℂ))
202, 19eqtrid 2787 . . . . 5 (𝜑𝐾 = (𝐴 ∩ ℂ))
2120oveq2d 7447 . . . 4 (𝜑 → (ℂflds 𝐾) = (ℂflds (𝐴 ∩ ℂ)))
2216ressinbas 17291 . . . . 5 (𝐴 ∈ V → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2315, 22syl 17 . . . 4 (𝜑 → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2421, 23eqtr4d 2778 . . 3 (𝜑 → (ℂflds 𝐾) = (ℂflds 𝐴))
251, 24eqtr4d 2778 . 2 (𝜑𝐹 = (ℂflds 𝐾))
2625, 6eqeltrrd 2840 . . . 4 (𝜑 → (ℂflds 𝐾) ∈ Ring)
27 cnring 21421 . . . 4 fld ∈ Ring
2826, 27jctil 519 . . 3 (𝜑 → (ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring))
2912, 16ressbasss 17284 . . . . . 6 (Base‘(ℂflds 𝐴)) ⊆ ℂ
303, 29eqsstrdi 4050 . . . . 5 (𝜑 → (Base‘𝐹) ⊆ ℂ)
312, 30eqsstrid 4044 . . . 4 (𝜑𝐾 ⊆ ℂ)
32 eqid 2735 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
33 eqid 2735 . . . . . . . . . 10 (1r𝐹) = (1r𝐹)
3432, 33drngunz 20764 . . . . . . . . 9 (𝐹 ∈ DivRing → (1r𝐹) ≠ (0g𝐹))
354, 34syl 17 . . . . . . . 8 (𝜑 → (1r𝐹) ≠ (0g𝐹))
3625fveq2d 6911 . . . . . . . . 9 (𝜑 → (0g𝐹) = (0g‘(ℂflds 𝐾)))
37 ringgrp 20256 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ Grp)
3827, 37mp1i 13 . . . . . . . . . . 11 (𝜑 → ℂfld ∈ Grp)
39 ringgrp 20256 . . . . . . . . . . . 12 ((ℂflds 𝐾) ∈ Ring → (ℂflds 𝐾) ∈ Grp)
4026, 39syl 17 . . . . . . . . . . 11 (𝜑 → (ℂflds 𝐾) ∈ Grp)
4116issubg 19157 . . . . . . . . . . 11 (𝐾 ∈ (SubGrp‘ℂfld) ↔ (ℂfld ∈ Grp ∧ 𝐾 ⊆ ℂ ∧ (ℂflds 𝐾) ∈ Grp))
4238, 31, 40, 41syl3anbrc 1342 . . . . . . . . . 10 (𝜑𝐾 ∈ (SubGrp‘ℂfld))
43 eqid 2735 . . . . . . . . . . 11 (ℂflds 𝐾) = (ℂflds 𝐾)
44 cnfld0 21423 . . . . . . . . . . 11 0 = (0g‘ℂfld)
4543, 44subg0 19163 . . . . . . . . . 10 (𝐾 ∈ (SubGrp‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
4642, 45syl 17 . . . . . . . . 9 (𝜑 → 0 = (0g‘(ℂflds 𝐾)))
4736, 46eqtr4d 2778 . . . . . . . 8 (𝜑 → (0g𝐹) = 0)
4835, 47neeqtrd 3008 . . . . . . 7 (𝜑 → (1r𝐹) ≠ 0)
4948neneqd 2943 . . . . . 6 (𝜑 → ¬ (1r𝐹) = 0)
502, 33ringidcl 20280 . . . . . . . . . . . 12 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
516, 50syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝐹) ∈ 𝐾)
5231, 51sseldd 3996 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ ℂ)
5352sqvald 14180 . . . . . . . . 9 (𝜑 → ((1r𝐹)↑2) = ((1r𝐹) · (1r𝐹)))
5425fveq2d 6911 . . . . . . . . . 10 (𝜑 → (1r𝐹) = (1r‘(ℂflds 𝐾)))
5554oveq1d 7446 . . . . . . . . 9 (𝜑 → ((1r𝐹) · (1r𝐹)) = ((1r‘(ℂflds 𝐾)) · (1r𝐹)))
5625fveq2d 6911 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐾)))
572, 56eqtrid 2787 . . . . . . . . . . 11 (𝜑𝐾 = (Base‘(ℂflds 𝐾)))
5851, 57eleqtrd 2841 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ (Base‘(ℂflds 𝐾)))
59 eqid 2735 . . . . . . . . . . 11 (Base‘(ℂflds 𝐾)) = (Base‘(ℂflds 𝐾))
602fvexi 6921 . . . . . . . . . . . 12 𝐾 ∈ V
61 cnfldmul 21390 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
6243, 61ressmulr 17353 . . . . . . . . . . . 12 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
6360, 62ax-mp 5 . . . . . . . . . . 11 · = (.r‘(ℂflds 𝐾))
64 eqid 2735 . . . . . . . . . . 11 (1r‘(ℂflds 𝐾)) = (1r‘(ℂflds 𝐾))
6559, 63, 64ringlidm 20283 . . . . . . . . . 10 (((ℂflds 𝐾) ∈ Ring ∧ (1r𝐹) ∈ (Base‘(ℂflds 𝐾))) → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6626, 58, 65syl2anc 584 . . . . . . . . 9 (𝜑 → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6753, 55, 663eqtrd 2779 . . . . . . . 8 (𝜑 → ((1r𝐹)↑2) = (1r𝐹))
68 sq01 14261 . . . . . . . . 9 ((1r𝐹) ∈ ℂ → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
6952, 68syl 17 . . . . . . . 8 (𝜑 → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
7067, 69mpbid 232 . . . . . . 7 (𝜑 → ((1r𝐹) = 0 ∨ (1r𝐹) = 1))
7170ord 864 . . . . . 6 (𝜑 → (¬ (1r𝐹) = 0 → (1r𝐹) = 1))
7249, 71mpd 15 . . . . 5 (𝜑 → (1r𝐹) = 1)
7372, 51eqeltrrd 2840 . . . 4 (𝜑 → 1 ∈ 𝐾)
7431, 73jca 511 . . 3 (𝜑 → (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾))
75 cnfld1 21424 . . . 4 1 = (1r‘ℂfld)
7616, 75issubrg 20588 . . 3 (𝐾 ∈ (SubRing‘ℂfld) ↔ ((ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring) ∧ (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾)))
7728, 74, 76sylanbrc 583 . 2 (𝜑𝐾 ∈ (SubRing‘ℂfld))
7825, 20, 773jca 1127 1 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cin 3962  wss 3963  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   · cmul 11158  2c2 12319  cexp 14099  Basecbs 17245  s cress 17274  .rcmulr 17299  0gc0g 17486  Grpcgrp 18964  SubGrpcsubg 19151  1rcur 20199  Ringcrg 20251  SubRingcsubrg 20586  DivRingcdr 20746  fldccnfld 21382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-seq 14040  df-exp 14100  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-subrg 20587  df-drng 20748  df-cnfld 21383
This theorem is referenced by:  cphreccllem  25226  cphsubrg  25228  phclm  25280  tcphcph  25285
  Copyright terms: Public domain W3C validator