MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsubrglem Structured version   Visualization version   GIF version

Theorem cphsubrglem 23775
Description: Lemma for cphsubrg 23778. (Contributed by Mario Carneiro, 9-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphsubrglem (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))

Proof of Theorem cphsubrglem
StepHypRef Expression
1 cphsubrglem.1 . . 3 (𝜑𝐹 = (ℂflds 𝐴))
2 cphsubrglem.k . . . . . 6 𝐾 = (Base‘𝐹)
31fveq2d 6669 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐴)))
4 cphsubrglem.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
5 drngring 19503 . . . . . . . . . . . 12 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ Ring)
71, 6eqeltrrd 2914 . . . . . . . . . 10 (𝜑 → (ℂflds 𝐴) ∈ Ring)
8 eqid 2821 . . . . . . . . . . 11 (Base‘(ℂflds 𝐴)) = (Base‘(ℂflds 𝐴))
9 eqid 2821 . . . . . . . . . . 11 (0g‘(ℂflds 𝐴)) = (0g‘(ℂflds 𝐴))
108, 9ring0cl 19313 . . . . . . . . . 10 ((ℂflds 𝐴) ∈ Ring → (0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)))
11 reldmress 16544 . . . . . . . . . . 11 Rel dom ↾s
12 eqid 2821 . . . . . . . . . . 11 (ℂflds 𝐴) = (ℂflds 𝐴)
1311, 12, 8elbasov 16539 . . . . . . . . . 10 ((0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)) → (ℂfld ∈ V ∧ 𝐴 ∈ V))
147, 10, 133syl 18 . . . . . . . . 9 (𝜑 → (ℂfld ∈ V ∧ 𝐴 ∈ V))
1514simprd 498 . . . . . . . 8 (𝜑𝐴 ∈ V)
16 cnfldbas 20543 . . . . . . . . 9 ℂ = (Base‘ℂfld)
1712, 16ressbas 16548 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
1815, 17syl 17 . . . . . . 7 (𝜑 → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
193, 18eqtr4d 2859 . . . . . 6 (𝜑 → (Base‘𝐹) = (𝐴 ∩ ℂ))
202, 19syl5eq 2868 . . . . 5 (𝜑𝐾 = (𝐴 ∩ ℂ))
2120oveq2d 7166 . . . 4 (𝜑 → (ℂflds 𝐾) = (ℂflds (𝐴 ∩ ℂ)))
2216ressinbas 16554 . . . . 5 (𝐴 ∈ V → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2315, 22syl 17 . . . 4 (𝜑 → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2421, 23eqtr4d 2859 . . 3 (𝜑 → (ℂflds 𝐾) = (ℂflds 𝐴))
251, 24eqtr4d 2859 . 2 (𝜑𝐹 = (ℂflds 𝐾))
2625, 6eqeltrrd 2914 . . . 4 (𝜑 → (ℂflds 𝐾) ∈ Ring)
27 cnring 20561 . . . 4 fld ∈ Ring
2826, 27jctil 522 . . 3 (𝜑 → (ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring))
2912, 16ressbasss 16550 . . . . . 6 (Base‘(ℂflds 𝐴)) ⊆ ℂ
303, 29eqsstrdi 4021 . . . . 5 (𝜑 → (Base‘𝐹) ⊆ ℂ)
312, 30eqsstrid 4015 . . . 4 (𝜑𝐾 ⊆ ℂ)
32 eqid 2821 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
33 eqid 2821 . . . . . . . . . 10 (1r𝐹) = (1r𝐹)
3432, 33drngunz 19511 . . . . . . . . 9 (𝐹 ∈ DivRing → (1r𝐹) ≠ (0g𝐹))
354, 34syl 17 . . . . . . . 8 (𝜑 → (1r𝐹) ≠ (0g𝐹))
3625fveq2d 6669 . . . . . . . . 9 (𝜑 → (0g𝐹) = (0g‘(ℂflds 𝐾)))
37 ringgrp 19296 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ Grp)
3827, 37mp1i 13 . . . . . . . . . . 11 (𝜑 → ℂfld ∈ Grp)
39 ringgrp 19296 . . . . . . . . . . . 12 ((ℂflds 𝐾) ∈ Ring → (ℂflds 𝐾) ∈ Grp)
4026, 39syl 17 . . . . . . . . . . 11 (𝜑 → (ℂflds 𝐾) ∈ Grp)
4116issubg 18273 . . . . . . . . . . 11 (𝐾 ∈ (SubGrp‘ℂfld) ↔ (ℂfld ∈ Grp ∧ 𝐾 ⊆ ℂ ∧ (ℂflds 𝐾) ∈ Grp))
4238, 31, 40, 41syl3anbrc 1339 . . . . . . . . . 10 (𝜑𝐾 ∈ (SubGrp‘ℂfld))
43 eqid 2821 . . . . . . . . . . 11 (ℂflds 𝐾) = (ℂflds 𝐾)
44 cnfld0 20563 . . . . . . . . . . 11 0 = (0g‘ℂfld)
4543, 44subg0 18279 . . . . . . . . . 10 (𝐾 ∈ (SubGrp‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
4642, 45syl 17 . . . . . . . . 9 (𝜑 → 0 = (0g‘(ℂflds 𝐾)))
4736, 46eqtr4d 2859 . . . . . . . 8 (𝜑 → (0g𝐹) = 0)
4835, 47neeqtrd 3085 . . . . . . 7 (𝜑 → (1r𝐹) ≠ 0)
4948neneqd 3021 . . . . . 6 (𝜑 → ¬ (1r𝐹) = 0)
502, 33ringidcl 19312 . . . . . . . . . . . 12 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
516, 50syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝐹) ∈ 𝐾)
5231, 51sseldd 3968 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ ℂ)
5352sqvald 13501 . . . . . . . . 9 (𝜑 → ((1r𝐹)↑2) = ((1r𝐹) · (1r𝐹)))
5425fveq2d 6669 . . . . . . . . . 10 (𝜑 → (1r𝐹) = (1r‘(ℂflds 𝐾)))
5554oveq1d 7165 . . . . . . . . 9 (𝜑 → ((1r𝐹) · (1r𝐹)) = ((1r‘(ℂflds 𝐾)) · (1r𝐹)))
5625fveq2d 6669 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐾)))
572, 56syl5eq 2868 . . . . . . . . . . 11 (𝜑𝐾 = (Base‘(ℂflds 𝐾)))
5851, 57eleqtrd 2915 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ (Base‘(ℂflds 𝐾)))
59 eqid 2821 . . . . . . . . . . 11 (Base‘(ℂflds 𝐾)) = (Base‘(ℂflds 𝐾))
602fvexi 6679 . . . . . . . . . . . 12 𝐾 ∈ V
61 cnfldmul 20545 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
6243, 61ressmulr 16619 . . . . . . . . . . . 12 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
6360, 62ax-mp 5 . . . . . . . . . . 11 · = (.r‘(ℂflds 𝐾))
64 eqid 2821 . . . . . . . . . . 11 (1r‘(ℂflds 𝐾)) = (1r‘(ℂflds 𝐾))
6559, 63, 64ringlidm 19315 . . . . . . . . . 10 (((ℂflds 𝐾) ∈ Ring ∧ (1r𝐹) ∈ (Base‘(ℂflds 𝐾))) → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6626, 58, 65syl2anc 586 . . . . . . . . 9 (𝜑 → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6753, 55, 663eqtrd 2860 . . . . . . . 8 (𝜑 → ((1r𝐹)↑2) = (1r𝐹))
68 sq01 13580 . . . . . . . . 9 ((1r𝐹) ∈ ℂ → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
6952, 68syl 17 . . . . . . . 8 (𝜑 → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
7067, 69mpbid 234 . . . . . . 7 (𝜑 → ((1r𝐹) = 0 ∨ (1r𝐹) = 1))
7170ord 860 . . . . . 6 (𝜑 → (¬ (1r𝐹) = 0 → (1r𝐹) = 1))
7249, 71mpd 15 . . . . 5 (𝜑 → (1r𝐹) = 1)
7372, 51eqeltrrd 2914 . . . 4 (𝜑 → 1 ∈ 𝐾)
7431, 73jca 514 . . 3 (𝜑 → (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾))
75 cnfld1 20564 . . . 4 1 = (1r‘ℂfld)
7616, 75issubrg 19529 . . 3 (𝐾 ∈ (SubRing‘ℂfld) ↔ ((ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring) ∧ (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾)))
7728, 74, 76sylanbrc 585 . 2 (𝜑𝐾 ∈ (SubRing‘ℂfld))
7825, 20, 773jca 1124 1 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  cin 3935  wss 3936  cfv 6350  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   · cmul 10536  2c2 11686  cexp 13423  Basecbs 16477  s cress 16478  .rcmulr 16560  0gc0g 16707  Grpcgrp 18097  SubGrpcsubg 18267  1rcur 19245  Ringcrg 19291  DivRingcdr 19496  SubRingcsubrg 19525  fldccnfld 20539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-seq 13364  df-exp 13424  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-subg 18270  df-cmn 18902  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-drng 19498  df-subrg 19527  df-cnfld 20540
This theorem is referenced by:  cphreccllem  23776  cphsubrg  23778  phclm  23829  tcphcph  23834
  Copyright terms: Public domain W3C validator