MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsubrglem Structured version   Visualization version   GIF version

Theorem cphsubrglem 24341
Description: Lemma for cphsubrg 24344. (Contributed by Mario Carneiro, 9-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphsubrglem (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))

Proof of Theorem cphsubrglem
StepHypRef Expression
1 cphsubrglem.1 . . 3 (𝜑𝐹 = (ℂflds 𝐴))
2 cphsubrglem.k . . . . . 6 𝐾 = (Base‘𝐹)
31fveq2d 6778 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐴)))
4 cphsubrglem.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
5 drngring 19998 . . . . . . . . . . . 12 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ Ring)
71, 6eqeltrrd 2840 . . . . . . . . . 10 (𝜑 → (ℂflds 𝐴) ∈ Ring)
8 eqid 2738 . . . . . . . . . . 11 (Base‘(ℂflds 𝐴)) = (Base‘(ℂflds 𝐴))
9 eqid 2738 . . . . . . . . . . 11 (0g‘(ℂflds 𝐴)) = (0g‘(ℂflds 𝐴))
108, 9ring0cl 19808 . . . . . . . . . 10 ((ℂflds 𝐴) ∈ Ring → (0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)))
11 reldmress 16943 . . . . . . . . . . 11 Rel dom ↾s
12 eqid 2738 . . . . . . . . . . 11 (ℂflds 𝐴) = (ℂflds 𝐴)
1311, 12, 8elbasov 16919 . . . . . . . . . 10 ((0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)) → (ℂfld ∈ V ∧ 𝐴 ∈ V))
147, 10, 133syl 18 . . . . . . . . 9 (𝜑 → (ℂfld ∈ V ∧ 𝐴 ∈ V))
1514simprd 496 . . . . . . . 8 (𝜑𝐴 ∈ V)
16 cnfldbas 20601 . . . . . . . . 9 ℂ = (Base‘ℂfld)
1712, 16ressbas 16947 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
1815, 17syl 17 . . . . . . 7 (𝜑 → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
193, 18eqtr4d 2781 . . . . . 6 (𝜑 → (Base‘𝐹) = (𝐴 ∩ ℂ))
202, 19eqtrid 2790 . . . . 5 (𝜑𝐾 = (𝐴 ∩ ℂ))
2120oveq2d 7291 . . . 4 (𝜑 → (ℂflds 𝐾) = (ℂflds (𝐴 ∩ ℂ)))
2216ressinbas 16955 . . . . 5 (𝐴 ∈ V → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2315, 22syl 17 . . . 4 (𝜑 → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2421, 23eqtr4d 2781 . . 3 (𝜑 → (ℂflds 𝐾) = (ℂflds 𝐴))
251, 24eqtr4d 2781 . 2 (𝜑𝐹 = (ℂflds 𝐾))
2625, 6eqeltrrd 2840 . . . 4 (𝜑 → (ℂflds 𝐾) ∈ Ring)
27 cnring 20620 . . . 4 fld ∈ Ring
2826, 27jctil 520 . . 3 (𝜑 → (ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring))
2912, 16ressbasss 16950 . . . . . 6 (Base‘(ℂflds 𝐴)) ⊆ ℂ
303, 29eqsstrdi 3975 . . . . 5 (𝜑 → (Base‘𝐹) ⊆ ℂ)
312, 30eqsstrid 3969 . . . 4 (𝜑𝐾 ⊆ ℂ)
32 eqid 2738 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
33 eqid 2738 . . . . . . . . . 10 (1r𝐹) = (1r𝐹)
3432, 33drngunz 20006 . . . . . . . . 9 (𝐹 ∈ DivRing → (1r𝐹) ≠ (0g𝐹))
354, 34syl 17 . . . . . . . 8 (𝜑 → (1r𝐹) ≠ (0g𝐹))
3625fveq2d 6778 . . . . . . . . 9 (𝜑 → (0g𝐹) = (0g‘(ℂflds 𝐾)))
37 ringgrp 19788 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ Grp)
3827, 37mp1i 13 . . . . . . . . . . 11 (𝜑 → ℂfld ∈ Grp)
39 ringgrp 19788 . . . . . . . . . . . 12 ((ℂflds 𝐾) ∈ Ring → (ℂflds 𝐾) ∈ Grp)
4026, 39syl 17 . . . . . . . . . . 11 (𝜑 → (ℂflds 𝐾) ∈ Grp)
4116issubg 18755 . . . . . . . . . . 11 (𝐾 ∈ (SubGrp‘ℂfld) ↔ (ℂfld ∈ Grp ∧ 𝐾 ⊆ ℂ ∧ (ℂflds 𝐾) ∈ Grp))
4238, 31, 40, 41syl3anbrc 1342 . . . . . . . . . 10 (𝜑𝐾 ∈ (SubGrp‘ℂfld))
43 eqid 2738 . . . . . . . . . . 11 (ℂflds 𝐾) = (ℂflds 𝐾)
44 cnfld0 20622 . . . . . . . . . . 11 0 = (0g‘ℂfld)
4543, 44subg0 18761 . . . . . . . . . 10 (𝐾 ∈ (SubGrp‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
4642, 45syl 17 . . . . . . . . 9 (𝜑 → 0 = (0g‘(ℂflds 𝐾)))
4736, 46eqtr4d 2781 . . . . . . . 8 (𝜑 → (0g𝐹) = 0)
4835, 47neeqtrd 3013 . . . . . . 7 (𝜑 → (1r𝐹) ≠ 0)
4948neneqd 2948 . . . . . 6 (𝜑 → ¬ (1r𝐹) = 0)
502, 33ringidcl 19807 . . . . . . . . . . . 12 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
516, 50syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝐹) ∈ 𝐾)
5231, 51sseldd 3922 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ ℂ)
5352sqvald 13861 . . . . . . . . 9 (𝜑 → ((1r𝐹)↑2) = ((1r𝐹) · (1r𝐹)))
5425fveq2d 6778 . . . . . . . . . 10 (𝜑 → (1r𝐹) = (1r‘(ℂflds 𝐾)))
5554oveq1d 7290 . . . . . . . . 9 (𝜑 → ((1r𝐹) · (1r𝐹)) = ((1r‘(ℂflds 𝐾)) · (1r𝐹)))
5625fveq2d 6778 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐾)))
572, 56eqtrid 2790 . . . . . . . . . . 11 (𝜑𝐾 = (Base‘(ℂflds 𝐾)))
5851, 57eleqtrd 2841 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ (Base‘(ℂflds 𝐾)))
59 eqid 2738 . . . . . . . . . . 11 (Base‘(ℂflds 𝐾)) = (Base‘(ℂflds 𝐾))
602fvexi 6788 . . . . . . . . . . . 12 𝐾 ∈ V
61 cnfldmul 20603 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
6243, 61ressmulr 17017 . . . . . . . . . . . 12 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
6360, 62ax-mp 5 . . . . . . . . . . 11 · = (.r‘(ℂflds 𝐾))
64 eqid 2738 . . . . . . . . . . 11 (1r‘(ℂflds 𝐾)) = (1r‘(ℂflds 𝐾))
6559, 63, 64ringlidm 19810 . . . . . . . . . 10 (((ℂflds 𝐾) ∈ Ring ∧ (1r𝐹) ∈ (Base‘(ℂflds 𝐾))) → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6626, 58, 65syl2anc 584 . . . . . . . . 9 (𝜑 → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6753, 55, 663eqtrd 2782 . . . . . . . 8 (𝜑 → ((1r𝐹)↑2) = (1r𝐹))
68 sq01 13940 . . . . . . . . 9 ((1r𝐹) ∈ ℂ → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
6952, 68syl 17 . . . . . . . 8 (𝜑 → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
7067, 69mpbid 231 . . . . . . 7 (𝜑 → ((1r𝐹) = 0 ∨ (1r𝐹) = 1))
7170ord 861 . . . . . 6 (𝜑 → (¬ (1r𝐹) = 0 → (1r𝐹) = 1))
7249, 71mpd 15 . . . . 5 (𝜑 → (1r𝐹) = 1)
7372, 51eqeltrrd 2840 . . . 4 (𝜑 → 1 ∈ 𝐾)
7431, 73jca 512 . . 3 (𝜑 → (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾))
75 cnfld1 20623 . . . 4 1 = (1r‘ℂfld)
7616, 75issubrg 20024 . . 3 (𝐾 ∈ (SubRing‘ℂfld) ↔ ((ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring) ∧ (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾)))
7728, 74, 76sylanbrc 583 . 2 (𝜑𝐾 ∈ (SubRing‘ℂfld))
7825, 20, 773jca 1127 1 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cin 3886  wss 3887  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   · cmul 10876  2c2 12028  cexp 13782  Basecbs 16912  s cress 16941  .rcmulr 16963  0gc0g 17150  Grpcgrp 18577  SubGrpcsubg 18749  1rcur 19737  Ringcrg 19783  DivRingcdr 19991  SubRingcsubrg 20020  fldccnfld 20597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-seq 13722  df-exp 13783  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-subg 18752  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-drng 19993  df-subrg 20022  df-cnfld 20598
This theorem is referenced by:  cphreccllem  24342  cphsubrg  24344  phclm  24396  tcphcph  24401
  Copyright terms: Public domain W3C validator