![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphnlm | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a normed module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
cphnlm | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2730 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
3 | eqid 2730 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
4 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2730 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | 1, 2, 3, 4, 5 | iscph 24920 | . . 3 ⊢ (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖‘𝑊)𝑥))))) |
7 | 6 | simp1bi 1143 | . 2 ⊢ (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))))) |
8 | 7 | simp2d 1141 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∩ cin 3948 ⊆ wss 3949 ↦ cmpt 5232 “ cima 5680 ‘cfv 6544 (class class class)co 7413 0cc0 11114 +∞cpnf 11251 [,)cico 13332 √csqrt 15186 Basecbs 17150 ↾s cress 17179 Scalarcsca 17206 ·𝑖cip 17208 ℂfldccnfld 21146 PreHilcphl 21398 normcnm 24307 NrmModcnlm 24311 ℂPreHilccph 24916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fv 6552 df-ov 7416 df-cph 24918 |
This theorem is referenced by: cphngp 24923 cphlmod 24924 cphnvc 24926 cphnmvs 24940 ipcnlem2 24994 ipcnlem1 24995 csscld 24999 cphsscph 25001 |
Copyright terms: Public domain | W3C validator |