MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnlm Structured version   Visualization version   GIF version

Theorem cphnlm 24241
Description: A subcomplex pre-Hilbert space is a normed module. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphnlm (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)

Proof of Theorem cphnlm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2738 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 eqid 2738 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2738 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
61, 2, 3, 4, 5iscph 24239 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1143 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))))
87simp2d 1141 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883  cmpt 5153  cima 5583  cfv 6418  (class class class)co 7255  0cc0 10802  +∞cpnf 10937  [,)cico 13010  csqrt 14872  Basecbs 16840  s cress 16867  Scalarcsca 16891  ·𝑖cip 16893  fldccnfld 20510  PreHilcphl 20741  normcnm 23638  NrmModcnlm 23642  ℂPreHilccph 24235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426  df-ov 7258  df-cph 24237
This theorem is referenced by:  cphngp  24242  cphlmod  24243  cphnvc  24245  cphnmvs  24259  ipcnlem2  24313  ipcnlem1  24314  csscld  24318  cphsscph  24320
  Copyright terms: Public domain W3C validator