MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnlm Structured version   Visualization version   GIF version

Theorem cphnlm 25105
Description: A subcomplex pre-Hilbert space is a normed module. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphnlm (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)

Proof of Theorem cphnlm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2729 . . . 4 (norm‘𝑊) = (norm‘𝑊)
4 eqid 2729 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2729 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
61, 2, 3, 4, 5iscph 25103 . . 3 (𝑊 ∈ ℂPreHil ↔ ((𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))) ∧ (√ “ ((Base‘(Scalar‘𝑊)) ∩ (0[,)+∞))) ⊆ (Base‘(Scalar‘𝑊)) ∧ (norm‘𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥)))))
76simp1bi 1145 . 2 (𝑊 ∈ ℂPreHil → (𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊)))))
87simp2d 1143 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cin 3910  wss 3911  cmpt 5183  cima 5634  cfv 6499  (class class class)co 7369  0cc0 11044  +∞cpnf 11181  [,)cico 13284  csqrt 15175  Basecbs 17155  s cress 17176  Scalarcsca 17199  ·𝑖cip 17201  fldccnfld 21296  PreHilcphl 21566  normcnm 24497  NrmModcnlm 24501  ℂPreHilccph 25099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fv 6507  df-ov 7372  df-cph 25101
This theorem is referenced by:  cphngp  25106  cphlmod  25107  cphnvc  25109  cphnmvs  25123  ipcnlem2  25177  ipcnlem1  25178  csscld  25182  cphsscph  25184
  Copyright terms: Public domain W3C validator