MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov Structured version   Visualization version   GIF version

Theorem csbov 7463
Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbov 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem csbov
StepHypRef Expression
1 csbov123 7462 . 2 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)
2 csbconstg 3911 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐵)
3 csbconstg 3911 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐶 = 𝐶)
42, 3oveq12d 7438 . . 3 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶))
5 0fv 6941 . . . . 5 (∅‘⟨𝐵, 𝐶⟩) = ∅
6 df-ov 7423 . . . . 5 (𝐵𝐶) = (∅‘⟨𝐵, 𝐶⟩)
7 0ov 7457 . . . . 5 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = ∅
85, 6, 73eqtr4ri 2767 . . . 4 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐵𝐶)
9 csbprc 4407 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐹 = ∅)
109oveqd 7437 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
119oveqd 7437 . . . 4 𝐴 ∈ V → (𝐵𝐴 / 𝑥𝐹𝐶) = (𝐵𝐶))
128, 10, 113eqtr4a 2794 . . 3 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶))
134, 12pm2.61i 182 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
141, 13eqtri 2756 1 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099  Vcvv 3471  csb 3892  c0 4323  cop 4635  cfv 6548  (class class class)co 7420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-dm 5688  df-iota 6500  df-fv 6556  df-ov 7423
This theorem is referenced by:  mptcoe1matfsupp  22703  mp2pm2mplem4  22710
  Copyright terms: Public domain W3C validator