![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbov | Structured version Visualization version GIF version |
Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbov | ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbov123 7450 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) | |
2 | csbconstg 3912 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | csbconstg 3912 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
4 | 2, 3 | oveq12d 7426 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
5 | 0fv 6935 | . . . . 5 ⊢ (∅‘⟨𝐵, 𝐶⟩) = ∅ | |
6 | df-ov 7411 | . . . . 5 ⊢ (𝐵∅𝐶) = (∅‘⟨𝐵, 𝐶⟩) | |
7 | 0ov 7445 | . . . . 5 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = ∅ | |
8 | 5, 6, 7 | 3eqtr4ri 2771 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = (𝐵∅𝐶) |
9 | csbprc 4406 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐹 = ∅) | |
10 | 9 | oveqd 7425 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶)) |
11 | 9 | oveqd 7425 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) = (𝐵∅𝐶)) |
12 | 8, 10, 11 | 3eqtr4a 2798 | . . 3 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
13 | 4, 12 | pm2.61i 182 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
14 | 1, 13 | eqtri 2760 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⦋csb 3893 ∅c0 4322 ⟨cop 4634 ‘cfv 6543 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-dm 5686 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: mptcoe1matfsupp 22303 mp2pm2mplem4 22310 |
Copyright terms: Public domain | W3C validator |