MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov Structured version   Visualization version   GIF version

Theorem csbov 7198
Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbov 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem csbov
StepHypRef Expression
1 csbov123 7197 . 2 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)
2 csbconstg 3826 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐵 = 𝐵)
3 csbconstg 3826 . . . 4 (𝐴 ∈ V → 𝐴 / 𝑥𝐶 = 𝐶)
42, 3oveq12d 7173 . . 3 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶))
5 0fv 6701 . . . . 5 (∅‘⟨𝐵, 𝐶⟩) = ∅
6 df-ov 7158 . . . . 5 (𝐵𝐶) = (∅‘⟨𝐵, 𝐶⟩)
7 0ov 7192 . . . . 5 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = ∅
85, 6, 73eqtr4ri 2792 . . . 4 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐵𝐶)
9 csbprc 4305 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐹 = ∅)
109oveqd 7172 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
119oveqd 7172 . . . 4 𝐴 ∈ V → (𝐵𝐴 / 𝑥𝐹𝐶) = (𝐵𝐶))
128, 10, 113eqtr4a 2819 . . 3 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶))
134, 12pm2.61i 185 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
141, 13eqtri 2781 1 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐵𝐴 / 𝑥𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2111  Vcvv 3409  csb 3807  c0 4227  cop 4531  cfv 6339  (class class class)co 7155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-dm 5537  df-iota 6298  df-fv 6347  df-ov 7158
This theorem is referenced by:  mptcoe1matfsupp  21507  mp2pm2mplem4  21514
  Copyright terms: Public domain W3C validator