![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbov | Structured version Visualization version GIF version |
Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbov | ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbov123 7400 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) | |
2 | csbconstg 3875 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | csbconstg 3875 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
4 | 2, 3 | oveq12d 7376 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
5 | 0fv 6887 | . . . . 5 ⊢ (∅‘⟨𝐵, 𝐶⟩) = ∅ | |
6 | df-ov 7361 | . . . . 5 ⊢ (𝐵∅𝐶) = (∅‘⟨𝐵, 𝐶⟩) | |
7 | 0ov 7395 | . . . . 5 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = ∅ | |
8 | 5, 6, 7 | 3eqtr4ri 2776 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = (𝐵∅𝐶) |
9 | csbprc 4367 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐹 = ∅) | |
10 | 9 | oveqd 7375 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶)) |
11 | 9 | oveqd 7375 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) = (𝐵∅𝐶)) |
12 | 8, 10, 11 | 3eqtr4a 2803 | . . 3 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
13 | 4, 12 | pm2.61i 182 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
14 | 1, 13 | eqtri 2765 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 Vcvv 3446 ⦋csb 3856 ∅c0 4283 ⟨cop 4593 ‘cfv 6497 (class class class)co 7358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-dm 5644 df-iota 6449 df-fv 6505 df-ov 7361 |
This theorem is referenced by: mptcoe1matfsupp 22154 mp2pm2mplem4 22161 |
Copyright terms: Public domain | W3C validator |