| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbov | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbov | ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbov123 7449 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) | |
| 2 | csbconstg 3893 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
| 3 | csbconstg 3893 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
| 4 | 2, 3 | oveq12d 7423 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
| 5 | 0fv 6920 | . . . . 5 ⊢ (∅‘〈𝐵, 𝐶〉) = ∅ | |
| 6 | df-ov 7408 | . . . . 5 ⊢ (𝐵∅𝐶) = (∅‘〈𝐵, 𝐶〉) | |
| 7 | 0ov 7442 | . . . . 5 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = ∅ | |
| 8 | 5, 6, 7 | 3eqtr4ri 2769 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = (𝐵∅𝐶) |
| 9 | csbprc 4384 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐹 = ∅) | |
| 10 | 9 | oveqd 7422 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶)) |
| 11 | 9 | oveqd 7422 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) = (𝐵∅𝐶)) |
| 12 | 8, 10, 11 | 3eqtr4a 2796 | . . 3 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
| 13 | 4, 12 | pm2.61i 182 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
| 14 | 1, 13 | eqtri 2758 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⦋csb 3874 ∅c0 4308 〈cop 4607 ‘cfv 6531 (class class class)co 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: mptcoe1matfsupp 22740 mp2pm2mplem4 22747 |
| Copyright terms: Public domain | W3C validator |