| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbov | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbov | ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbov123 7434 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) | |
| 2 | csbconstg 3884 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
| 3 | csbconstg 3884 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
| 4 | 2, 3 | oveq12d 7408 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
| 5 | 0fv 6905 | . . . . 5 ⊢ (∅‘〈𝐵, 𝐶〉) = ∅ | |
| 6 | df-ov 7393 | . . . . 5 ⊢ (𝐵∅𝐶) = (∅‘〈𝐵, 𝐶〉) | |
| 7 | 0ov 7427 | . . . . 5 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = ∅ | |
| 8 | 5, 6, 7 | 3eqtr4ri 2764 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = (𝐵∅𝐶) |
| 9 | csbprc 4375 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐹 = ∅) | |
| 10 | 9 | oveqd 7407 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶)) |
| 11 | 9 | oveqd 7407 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) = (𝐵∅𝐶)) |
| 12 | 8, 10, 11 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
| 13 | 4, 12 | pm2.61i 182 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
| 14 | 1, 13 | eqtri 2753 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⦋csb 3865 ∅c0 4299 〈cop 4598 ‘cfv 6514 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: mptcoe1matfsupp 22696 mp2pm2mplem4 22703 |
| Copyright terms: Public domain | W3C validator |