Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbov | Structured version Visualization version GIF version |
Description: Move class substitution in and out of an operation. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbov | ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbov123 7197 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) | |
2 | csbconstg 3826 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | csbconstg 3826 | . . . 4 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = 𝐶) | |
4 | 2, 3 | oveq12d 7173 | . . 3 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
5 | 0fv 6701 | . . . . 5 ⊢ (∅‘〈𝐵, 𝐶〉) = ∅ | |
6 | df-ov 7158 | . . . . 5 ⊢ (𝐵∅𝐶) = (∅‘〈𝐵, 𝐶〉) | |
7 | 0ov 7192 | . . . . 5 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = ∅ | |
8 | 5, 6, 7 | 3eqtr4ri 2792 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶) = (𝐵∅𝐶) |
9 | csbprc 4305 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐹 = ∅) | |
10 | 9 | oveqd 7172 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵∅⦋𝐴 / 𝑥⦌𝐶)) |
11 | 9 | oveqd 7172 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) = (𝐵∅𝐶)) |
12 | 8, 10, 11 | 3eqtr4a 2819 | . . 3 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶)) |
13 | 4, 12 | pm2.61i 185 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
14 | 1, 13 | eqtri 2781 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐵𝐹𝐶) = (𝐵⦋𝐴 / 𝑥⦌𝐹𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⦋csb 3807 ∅c0 4227 〈cop 4531 ‘cfv 6339 (class class class)co 7155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-dm 5537 df-iota 6298 df-fv 6347 df-ov 7158 |
This theorem is referenced by: mptcoe1matfsupp 21507 mp2pm2mplem4 21514 |
Copyright terms: Public domain | W3C validator |