MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ov Structured version   Visualization version   GIF version

Theorem 0ov 6940
Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.)
Assertion
Ref Expression
0ov (𝐴𝐵) = ∅

Proof of Theorem 0ov
StepHypRef Expression
1 df-ov 6907 . 2 (𝐴𝐵) = (∅‘⟨𝐴, 𝐵⟩)
2 0fv 6472 . 2 (∅‘⟨𝐴, 𝐵⟩) = ∅
31, 2eqtri 2848 1 (𝐴𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  c0 4143  cop 4402  cfv 6122  (class class class)co 6904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-nul 5012  ax-pow 5064
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-dm 5351  df-iota 6085  df-fv 6130  df-ov 6907
This theorem is referenced by:  2mpt20  7141  el2mpt2csbcl  7512  homarcl  17029  oppglsm  18407  iswwlksnon  27151  iswspthsnon  27154  mclsrcl  32003
  Copyright terms: Public domain W3C validator