MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ov Structured version   Visualization version   GIF version

Theorem 0ov 7344
Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.)
Assertion
Ref Expression
0ov (𝐴𝐵) = ∅

Proof of Theorem 0ov
StepHypRef Expression
1 df-ov 7310 . 2 (𝐴𝐵) = (∅‘⟨𝐴, 𝐵⟩)
2 0fv 6845 . 2 (∅‘⟨𝐴, 𝐵⟩) = ∅
31, 2eqtri 2764 1 (𝐴𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  c0 4262  cop 4571  cfv 6458  (class class class)co 7307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-dm 5610  df-iota 6410  df-fv 6466  df-ov 7310
This theorem is referenced by:  csbov  7350  2mpo0  7550  el2mpocsbcl  7957  homarcl  17792  oppglsm  19296  iswwlksnon  28267  iswspthsnon  28270  mclsrcl  33572  indthinc  46577  indthincALT  46578  prsthinc  46579
  Copyright terms: Public domain W3C validator