| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ov | Structured version Visualization version GIF version | ||
| Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.) |
| Ref | Expression |
|---|---|
| 0ov | ⊢ (𝐴∅𝐵) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7393 | . 2 ⊢ (𝐴∅𝐵) = (∅‘〈𝐴, 𝐵〉) | |
| 2 | 0fv 6905 | . 2 ⊢ (∅‘〈𝐴, 𝐵〉) = ∅ | |
| 3 | 1, 2 | eqtri 2753 | 1 ⊢ (𝐴∅𝐵) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4299 〈cop 4598 ‘cfv 6514 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: csbov 7435 2mpo0 7641 el2mpocsbcl 8067 homarcl 17997 oppglsm 19579 iswwlksnon 29790 iswspthsnon 29793 mclsrcl 35555 oppcup3 49202 indthinc 49455 indthincALT 49456 prsthinc 49457 lanrcl 49614 ranrcl 49615 rellan 49616 relran 49617 |
| Copyright terms: Public domain | W3C validator |