| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ov | Structured version Visualization version GIF version | ||
| Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.) |
| Ref | Expression |
|---|---|
| 0ov | ⊢ (𝐴∅𝐵) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7356 | . 2 ⊢ (𝐴∅𝐵) = (∅‘〈𝐴, 𝐵〉) | |
| 2 | 0fv 6868 | . 2 ⊢ (∅‘〈𝐴, 𝐵〉) = ∅ | |
| 3 | 1, 2 | eqtri 2752 | 1 ⊢ (𝐴∅𝐵) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4286 〈cop 4585 ‘cfv 6486 (class class class)co 7353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: csbov 7398 2mpo0 7602 el2mpocsbcl 8025 homarcl 17953 oppglsm 19539 iswwlksnon 29816 iswspthsnon 29819 mclsrcl 35533 oppcup3 49195 indthinc 49448 indthincALT 49449 prsthinc 49450 lanrcl 49607 ranrcl 49608 rellan 49609 relran 49610 |
| Copyright terms: Public domain | W3C validator |