MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ov Structured version   Visualization version   GIF version

Theorem 0ov 7390
Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.)
Assertion
Ref Expression
0ov (𝐴𝐵) = ∅

Proof of Theorem 0ov
StepHypRef Expression
1 df-ov 7356 . 2 (𝐴𝐵) = (∅‘⟨𝐴, 𝐵⟩)
2 0fv 6868 . 2 (∅‘⟨𝐴, 𝐵⟩) = ∅
31, 2eqtri 2752 1 (𝐴𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4286  cop 4585  cfv 6486  (class class class)co 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-dm 5633  df-iota 6442  df-fv 6494  df-ov 7356
This theorem is referenced by:  csbov  7398  2mpo0  7602  el2mpocsbcl  8025  homarcl  17953  oppglsm  19539  iswwlksnon  29816  iswspthsnon  29819  mclsrcl  35533  oppcup3  49195  indthinc  49448  indthincALT  49449  prsthinc  49450  lanrcl  49607  ranrcl  49608  rellan  49609  relran  49610
  Copyright terms: Public domain W3C validator