![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ov | Structured version Visualization version GIF version |
Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.) |
Ref | Expression |
---|---|
0ov | ⊢ (𝐴∅𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7451 | . 2 ⊢ (𝐴∅𝐵) = (∅‘〈𝐴, 𝐵〉) | |
2 | 0fv 6964 | . 2 ⊢ (∅‘〈𝐴, 𝐵〉) = ∅ | |
3 | 1, 2 | eqtri 2768 | 1 ⊢ (𝐴∅𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4352 〈cop 4654 ‘cfv 6573 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: csbov 7493 2mpo0 7699 el2mpocsbcl 8126 homarcl 18095 oppglsm 19684 iswwlksnon 29886 iswspthsnon 29889 mclsrcl 35529 indthinc 48719 indthincALT 48720 prsthinc 48721 |
Copyright terms: Public domain | W3C validator |