| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ov | Structured version Visualization version GIF version | ||
| Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.) |
| Ref | Expression |
|---|---|
| 0ov | ⊢ (𝐴∅𝐵) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7349 | . 2 ⊢ (𝐴∅𝐵) = (∅‘〈𝐴, 𝐵〉) | |
| 2 | 0fv 6863 | . 2 ⊢ (∅‘〈𝐴, 𝐵〉) = ∅ | |
| 3 | 1, 2 | eqtri 2754 | 1 ⊢ (𝐴∅𝐵) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 〈cop 4582 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-dm 5626 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: csbov 7391 2mpo0 7595 el2mpocsbcl 8015 homarcl 17932 oppglsm 19552 iswwlksnon 29829 iswspthsnon 29832 mclsrcl 35593 oppcup3 49240 indthinc 49493 indthincALT 49494 prsthinc 49495 lanrcl 49652 ranrcl 49653 rellan 49654 relran 49655 |
| Copyright terms: Public domain | W3C validator |