MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ov Structured version   Visualization version   GIF version

Theorem 0ov 7383
Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.)
Assertion
Ref Expression
0ov (𝐴𝐵) = ∅

Proof of Theorem 0ov
StepHypRef Expression
1 df-ov 7349 . 2 (𝐴𝐵) = (∅‘⟨𝐴, 𝐵⟩)
2 0fv 6863 . 2 (∅‘⟨𝐴, 𝐵⟩) = ∅
31, 2eqtri 2754 1 (𝐴𝐵) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4283  cop 4582  cfv 6481  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-dm 5626  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  csbov  7391  2mpo0  7595  el2mpocsbcl  8015  homarcl  17932  oppglsm  19552  iswwlksnon  29829  iswspthsnon  29832  mclsrcl  35593  oppcup3  49240  indthinc  49493  indthincALT  49494  prsthinc  49495  lanrcl  49652  ranrcl  49653  rellan  49654  relran  49655
  Copyright terms: Public domain W3C validator