| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ov | Structured version Visualization version GIF version | ||
| Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.) |
| Ref | Expression |
|---|---|
| 0ov | ⊢ (𝐴∅𝐵) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . 2 ⊢ (𝐴∅𝐵) = (∅‘〈𝐴, 𝐵〉) | |
| 2 | 0fv 6902 | . 2 ⊢ (∅‘〈𝐴, 𝐵〉) = ∅ | |
| 3 | 1, 2 | eqtri 2752 | 1 ⊢ (𝐴∅𝐵) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4296 〈cop 4595 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: csbov 7432 2mpo0 7638 el2mpocsbcl 8064 homarcl 17990 oppglsm 19572 iswwlksnon 29783 iswspthsnon 29786 mclsrcl 35548 oppcup3 49198 indthinc 49451 indthincALT 49452 prsthinc 49453 lanrcl 49610 ranrcl 49611 rellan 49612 relran 49613 |
| Copyright terms: Public domain | W3C validator |