Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ov | Structured version Visualization version GIF version |
Description: Operation value of the empty set. (Contributed by AV, 15-May-2021.) |
Ref | Expression |
---|---|
0ov | ⊢ (𝐴∅𝐵) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7271 | . 2 ⊢ (𝐴∅𝐵) = (∅‘〈𝐴, 𝐵〉) | |
2 | 0fv 6807 | . 2 ⊢ (∅‘〈𝐴, 𝐵〉) = ∅ | |
3 | 1, 2 | eqtri 2767 | 1 ⊢ (𝐴∅𝐵) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∅c0 4261 〈cop 4572 ‘cfv 6430 (class class class)co 7268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-dm 5598 df-iota 6388 df-fv 6438 df-ov 7271 |
This theorem is referenced by: csbov 7311 2mpo0 7509 el2mpocsbcl 7909 homarcl 17724 oppglsm 19228 iswwlksnon 28197 iswspthsnon 28200 mclsrcl 33502 indthinc 46285 indthincALT 46286 prsthinc 46287 |
Copyright terms: Public domain | W3C validator |