MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov12g Structured version   Visualization version   GIF version

Theorem csbov12g 7319
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov12g (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbov12g
StepHypRef Expression
1 csbov123 7317 . 2 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)
2 csbconstg 3851 . . 3 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐹)
32oveqd 7292 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
41, 3eqtrid 2790 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  csb 3832  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  csbov1g  7320  csbov2g  7321  offval22  7928  prmgaplem7  16758  mptscmfsupp0  20188  pm2mp  21974  chfacfscmulfsupp  22008  chfacfpmmulfsupp  22012  cayhamlem4  22037  iccelpart  44885  ply1mulgsumlem4  45730
  Copyright terms: Public domain W3C validator