MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbov12g Structured version   Visualization version   GIF version

Theorem csbov12g 7494
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
Assertion
Ref Expression
csbov12g (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbov12g
StepHypRef Expression
1 csbov123 7492 . 2 𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶)
2 csbconstg 3940 . . 3 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐹)
32oveqd 7465 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
41, 3eqtrid 2792 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐹𝐶) = (𝐴 / 𝑥𝐵𝐹𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  csb 3921  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  csbov1g  7495  csbov2g  7496  offval22  8129  prmgaplem7  17104  mptscmfsupp0  20947  pm2mp  22852  chfacfscmulfsupp  22886  chfacfpmmulfsupp  22890  cayhamlem4  22915  iccelpart  47307  ply1mulgsumlem4  48118
  Copyright terms: Public domain W3C validator