MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcoe1matfsupp Structured version   Visualization version   GIF version

Theorem mptcoe1matfsupp 22718
Description: The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptcoe1matfsupp.a 𝐴 = (𝑁 Mat 𝑅)
mptcoe1matfsupp.q 𝑄 = (Poly1𝐴)
mptcoe1matfsupp.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
mptcoe1matfsupp (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Distinct variable groups:   𝑘,𝐿   𝑘,𝐼   𝑘,𝐽   𝑘,𝑁   𝑘,𝑂   𝑅,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑄(𝑘)

Proof of Theorem mptcoe1matfsupp
Dummy variables 𝑐 𝑠 𝑥 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6843 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝑅) ∈ V)
2 mptcoe1matfsupp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2733 . . 3 (Base‘𝐴) = (Base‘𝐴)
5 simp2 1137 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐼𝑁)
65adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐼𝑁)
7 simp3 1138 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐽𝑁)
87adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐽𝑁)
9 simp3 1138 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑂𝐿)
1093ad2ant1 1133 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝑂𝐿)
11 eqid 2733 . . . . 5 (coe1𝑂) = (coe1𝑂)
12 mptcoe1matfsupp.l . . . . 5 𝐿 = (Base‘𝑄)
13 mptcoe1matfsupp.q . . . . 5 𝑄 = (Poly1𝐴)
1411, 12, 13, 4coe1fvalcl 22126 . . . 4 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1510, 14sylan 580 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
162, 3, 4, 6, 8, 15matecld 22342 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → (𝐼((coe1𝑂)‘𝑘)𝐽) ∈ (Base‘𝑅))
17 eqid 2733 . . . . . . 7 (0g𝐴) = (0g𝐴)
1811, 12, 13, 17, 4coe1fsupp 22128 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑐 finSupp (0g𝐴)})
19 elrabi 3639 . . . . . 6 ((coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑐 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
2010, 18, 193syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
21 fvex 6841 . . . . 5 (0g𝐴) ∈ V
2220, 21jctir 520 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V))
2311, 12, 13, 17coe1sfi 22127 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
2410, 23syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) finSupp (0g𝐴))
25 fsuppmapnn0ub 13904 . . . 4 (((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
2622, 24, 25sylc 65 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
27 csbov 7397 . . . . . . . . . 10 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽)
28 csbfv 6875 . . . . . . . . . . 11 𝑥 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥)
2928oveqi 7365 . . . . . . . . . 10 (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3027, 29eqtri 2756 . . . . . . . . 9 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3130a1i 11 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽))
32 oveq 7358 . . . . . . . . 9 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
3332adantl 481 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
34 eqid 2733 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
352, 34mat0op 22335 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
36353adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
37363ad2ant1 1133 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
38 eqidd 2734 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (0g𝑅) = (0g𝑅))
3937, 38, 5, 7, 1ovmpod 7504 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4039ad4antr 732 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4131, 33, 403eqtrd 2772 . . . . . . 7 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))
4241exp31 419 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4342a2d 29 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4443ralimdva 3145 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4544reximdva 3146 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4626, 45mpd 15 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅)))
471, 16, 46mptnn0fsupp 13906 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  csb 3846   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  cmpo 7354  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252   < clt 11153  0cn0 12388  Basecbs 17122  0gc0g 17345  Ringcrg 20153  Poly1cpl1 22090  coe1cco1 22091   Mat cmat 22323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-prds 17353  df-pws 17355  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrg 20487  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-dsmm 21671  df-frlm 21686  df-psr 21848  df-mpl 21850  df-opsr 21852  df-psr1 22093  df-ply1 22095  df-coe1 22096  df-mat 22324
This theorem is referenced by:  mply1topmatcllem  22719
  Copyright terms: Public domain W3C validator