MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcoe1matfsupp Structured version   Visualization version   GIF version

Theorem mptcoe1matfsupp 22824
Description: The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptcoe1matfsupp.a 𝐴 = (𝑁 Mat 𝑅)
mptcoe1matfsupp.q 𝑄 = (Poly1𝐴)
mptcoe1matfsupp.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
mptcoe1matfsupp (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Distinct variable groups:   𝑘,𝐿   𝑘,𝐼   𝑘,𝐽   𝑘,𝑁   𝑘,𝑂   𝑅,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑄(𝑘)

Proof of Theorem mptcoe1matfsupp
Dummy variables 𝑐 𝑠 𝑥 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6922 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝑅) ∈ V)
2 mptcoe1matfsupp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 eqid 2735 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2735 . . 3 (Base‘𝐴) = (Base‘𝐴)
5 simp2 1136 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐼𝑁)
65adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐼𝑁)
7 simp3 1137 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐽𝑁)
87adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐽𝑁)
9 simp3 1137 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑂𝐿)
1093ad2ant1 1132 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝑂𝐿)
11 eqid 2735 . . . . 5 (coe1𝑂) = (coe1𝑂)
12 mptcoe1matfsupp.l . . . . 5 𝐿 = (Base‘𝑄)
13 mptcoe1matfsupp.q . . . . 5 𝑄 = (Poly1𝐴)
1411, 12, 13, 4coe1fvalcl 22230 . . . 4 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1510, 14sylan 580 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
162, 3, 4, 6, 8, 15matecld 22448 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → (𝐼((coe1𝑂)‘𝑘)𝐽) ∈ (Base‘𝑅))
17 eqid 2735 . . . . . . 7 (0g𝐴) = (0g𝐴)
1811, 12, 13, 17, 4coe1fsupp 22232 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑐 finSupp (0g𝐴)})
19 elrabi 3690 . . . . . 6 ((coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑐 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
2010, 18, 193syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
21 fvex 6920 . . . . 5 (0g𝐴) ∈ V
2220, 21jctir 520 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V))
2311, 12, 13, 17coe1sfi 22231 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
2410, 23syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) finSupp (0g𝐴))
25 fsuppmapnn0ub 14033 . . . 4 (((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
2622, 24, 25sylc 65 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
27 csbov 7476 . . . . . . . . . 10 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽)
28 csbfv 6957 . . . . . . . . . . 11 𝑥 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥)
2928oveqi 7444 . . . . . . . . . 10 (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3027, 29eqtri 2763 . . . . . . . . 9 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3130a1i 11 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽))
32 oveq 7437 . . . . . . . . 9 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
3332adantl 481 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
34 eqid 2735 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
352, 34mat0op 22441 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
36353adant3 1131 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
37363ad2ant1 1132 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
38 eqidd 2736 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (0g𝑅) = (0g𝑅))
3937, 38, 5, 7, 1ovmpod 7585 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4039ad4antr 732 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4131, 33, 403eqtrd 2779 . . . . . . 7 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))
4241exp31 419 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4342a2d 29 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4443ralimdva 3165 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4544reximdva 3166 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4626, 45mpd 15 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅)))
471, 16, 46mptnn0fsupp 14035 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  csb 3908   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Fincfn 8984   finSupp cfsupp 9399   < clt 11293  0cn0 12524  Basecbs 17245  0gc0g 17486  Ringcrg 20251  Poly1cpl1 22194  coe1cco1 22195   Mat cmat 22427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrg 20587  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-psr 21947  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-ply1 22199  df-coe1 22200  df-mat 22428
This theorem is referenced by:  mply1topmatcllem  22825
  Copyright terms: Public domain W3C validator