Step | Hyp | Ref
| Expression |
1 | | fvexd 6786 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
2 | | mptcoe1matfsupp.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | eqid 2740 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
4 | | eqid 2740 |
. . 3
⊢
(Base‘𝐴) =
(Base‘𝐴) |
5 | | simp2 1136 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → 𝐼 ∈ 𝑁) |
6 | 5 | adantr 481 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐼 ∈ 𝑁) |
7 | | simp3 1137 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → 𝐽 ∈ 𝑁) |
8 | 7 | adantr 481 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐽 ∈ 𝑁) |
9 | | simp3 1137 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑂 ∈ 𝐿) |
10 | 9 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → 𝑂 ∈ 𝐿) |
11 | | eqid 2740 |
. . . . 5
⊢
(coe1‘𝑂) = (coe1‘𝑂) |
12 | | mptcoe1matfsupp.l |
. . . . 5
⊢ 𝐿 = (Base‘𝑄) |
13 | | mptcoe1matfsupp.q |
. . . . 5
⊢ 𝑄 = (Poly1‘𝐴) |
14 | 11, 12, 13, 4 | coe1fvalcl 21381 |
. . . 4
⊢ ((𝑂 ∈ 𝐿 ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑂)‘𝑘) ∈ (Base‘𝐴)) |
15 | 10, 14 | sylan 580 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑂)‘𝑘) ∈ (Base‘𝐴)) |
16 | 2, 3, 4, 6, 8, 15 | matecld 21573 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → (𝐼((coe1‘𝑂)‘𝑘)𝐽) ∈ (Base‘𝑅)) |
17 | | eqid 2740 |
. . . . . . 7
⊢
(0g‘𝐴) = (0g‘𝐴) |
18 | 11, 12, 13, 17, 4 | coe1fsupp 21383 |
. . . . . 6
⊢ (𝑂 ∈ 𝐿 → (coe1‘𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑m ℕ0)
∣ 𝑐 finSupp
(0g‘𝐴)}) |
19 | | elrabi 3620 |
. . . . . 6
⊢
((coe1‘𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑m ℕ0)
∣ 𝑐 finSupp
(0g‘𝐴)}
→ (coe1‘𝑂) ∈ ((Base‘𝐴) ↑m
ℕ0)) |
20 | 10, 18, 19 | 3syl 18 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (coe1‘𝑂) ∈ ((Base‘𝐴) ↑m
ℕ0)) |
21 | | fvex 6784 |
. . . . 5
⊢
(0g‘𝐴) ∈ V |
22 | 20, 21 | jctir 521 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ((coe1‘𝑂) ∈ ((Base‘𝐴) ↑m
ℕ0) ∧ (0g‘𝐴) ∈ V)) |
23 | 11, 12, 13, 17 | coe1sfi 21382 |
. . . . 5
⊢ (𝑂 ∈ 𝐿 → (coe1‘𝑂) finSupp
(0g‘𝐴)) |
24 | 10, 23 | syl 17 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (coe1‘𝑂) finSupp
(0g‘𝐴)) |
25 | | fsuppmapnn0ub 13713 |
. . . 4
⊢
(((coe1‘𝑂) ∈ ((Base‘𝐴) ↑m ℕ0)
∧ (0g‘𝐴) ∈ V) →
((coe1‘𝑂)
finSupp (0g‘𝐴) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ((coe1‘𝑂)‘𝑥) = (0g‘𝐴)))) |
26 | 22, 24, 25 | sylc 65 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ((coe1‘𝑂)‘𝑥) = (0g‘𝐴))) |
27 | | csbov 7314 |
. . . . . . . . . 10
⊢
⦋𝑥 /
𝑘⦌(𝐼((coe1‘𝑂)‘𝑘)𝐽) = (𝐼⦋𝑥 / 𝑘⦌((coe1‘𝑂)‘𝑘)𝐽) |
28 | | csbfv 6816 |
. . . . . . . . . . 11
⊢
⦋𝑥 /
𝑘⦌((coe1‘𝑂)‘𝑘) = ((coe1‘𝑂)‘𝑥) |
29 | 28 | oveqi 7284 |
. . . . . . . . . 10
⊢ (𝐼⦋𝑥 / 𝑘⦌((coe1‘𝑂)‘𝑘)𝐽) = (𝐼((coe1‘𝑂)‘𝑥)𝐽) |
30 | 27, 29 | eqtri 2768 |
. . . . . . . . 9
⊢
⦋𝑥 /
𝑘⦌(𝐼((coe1‘𝑂)‘𝑘)𝐽) = (𝐼((coe1‘𝑂)‘𝑥)𝐽) |
31 | 30 | a1i 11 |
. . . . . . . 8
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ 𝑠 < 𝑥) ∧
((coe1‘𝑂)‘𝑥) = (0g‘𝐴)) → ⦋𝑥 / 𝑘⦌(𝐼((coe1‘𝑂)‘𝑘)𝐽) = (𝐼((coe1‘𝑂)‘𝑥)𝐽)) |
32 | | oveq 7277 |
. . . . . . . . 9
⊢
(((coe1‘𝑂)‘𝑥) = (0g‘𝐴) → (𝐼((coe1‘𝑂)‘𝑥)𝐽) = (𝐼(0g‘𝐴)𝐽)) |
33 | 32 | adantl 482 |
. . . . . . . 8
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ 𝑠 < 𝑥) ∧
((coe1‘𝑂)‘𝑥) = (0g‘𝐴)) → (𝐼((coe1‘𝑂)‘𝑥)𝐽) = (𝐼(0g‘𝐴)𝐽)) |
34 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑅) = (0g‘𝑅) |
35 | 2, 34 | mat0op 21566 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
36 | 35 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (0g‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
37 | 36 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (0g‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
38 | | eqidd 2741 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → (0g‘𝑅) = (0g‘𝑅)) |
39 | 37, 38, 5, 7, 1 | ovmpod 7419 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼(0g‘𝐴)𝐽) = (0g‘𝑅)) |
40 | 39 | ad4antr 729 |
. . . . . . . 8
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ 𝑠 < 𝑥) ∧
((coe1‘𝑂)‘𝑥) = (0g‘𝐴)) → (𝐼(0g‘𝐴)𝐽) = (0g‘𝑅)) |
41 | 31, 33, 40 | 3eqtrd 2784 |
. . . . . . 7
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ 𝑠 < 𝑥) ∧
((coe1‘𝑂)‘𝑥) = (0g‘𝐴)) → ⦋𝑥 / 𝑘⦌(𝐼((coe1‘𝑂)‘𝑘)𝐽) = (0g‘𝑅)) |
42 | 41 | exp31 420 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (𝑠 < 𝑥 →
(((coe1‘𝑂)‘𝑥) = (0g‘𝐴) → ⦋𝑥 / 𝑘⦌(𝐼((coe1‘𝑂)‘𝑘)𝐽) = (0g‘𝑅)))) |
43 | 42 | a2d 29 |
. . . . 5
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((𝑠 < 𝑥 →
((coe1‘𝑂)‘𝑥) = (0g‘𝐴)) → (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌(𝐼((coe1‘𝑂)‘𝑘)𝐽) = (0g‘𝑅)))) |
44 | 43 | ralimdva 3105 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) ∧ 𝑠 ∈ ℕ0) →
(∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
((coe1‘𝑂)‘𝑥) = (0g‘𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌(𝐼((coe1‘𝑂)‘𝑘)𝐽) = (0g‘𝑅)))) |
45 | 44 | reximdva 3205 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ((coe1‘𝑂)‘𝑥) = (0g‘𝐴)) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌(𝐼((coe1‘𝑂)‘𝑘)𝐽) = (0g‘𝑅)))) |
46 | 26, 45 | mpd 15 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌(𝐼((coe1‘𝑂)‘𝑘)𝐽) = (0g‘𝑅))) |
47 | 1, 16, 46 | mptnn0fsupp 13715 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1‘𝑂)‘𝑘)𝐽)) finSupp (0g‘𝑅)) |