MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcoe1matfsupp Structured version   Visualization version   GIF version

Theorem mptcoe1matfsupp 22745
Description: The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptcoe1matfsupp.a 𝐴 = (𝑁 Mat 𝑅)
mptcoe1matfsupp.q 𝑄 = (Poly1𝐴)
mptcoe1matfsupp.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
mptcoe1matfsupp (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Distinct variable groups:   𝑘,𝐿   𝑘,𝐼   𝑘,𝐽   𝑘,𝑁   𝑘,𝑂   𝑅,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑄(𝑘)

Proof of Theorem mptcoe1matfsupp
Dummy variables 𝑐 𝑠 𝑥 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6896 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝑅) ∈ V)
2 mptcoe1matfsupp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2736 . . 3 (Base‘𝐴) = (Base‘𝐴)
5 simp2 1137 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐼𝑁)
65adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐼𝑁)
7 simp3 1138 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐽𝑁)
87adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐽𝑁)
9 simp3 1138 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑂𝐿)
1093ad2ant1 1133 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝑂𝐿)
11 eqid 2736 . . . . 5 (coe1𝑂) = (coe1𝑂)
12 mptcoe1matfsupp.l . . . . 5 𝐿 = (Base‘𝑄)
13 mptcoe1matfsupp.q . . . . 5 𝑄 = (Poly1𝐴)
1411, 12, 13, 4coe1fvalcl 22153 . . . 4 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1510, 14sylan 580 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
162, 3, 4, 6, 8, 15matecld 22369 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → (𝐼((coe1𝑂)‘𝑘)𝐽) ∈ (Base‘𝑅))
17 eqid 2736 . . . . . . 7 (0g𝐴) = (0g𝐴)
1811, 12, 13, 17, 4coe1fsupp 22155 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑐 finSupp (0g𝐴)})
19 elrabi 3671 . . . . . 6 ((coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑐 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
2010, 18, 193syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
21 fvex 6894 . . . . 5 (0g𝐴) ∈ V
2220, 21jctir 520 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V))
2311, 12, 13, 17coe1sfi 22154 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
2410, 23syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) finSupp (0g𝐴))
25 fsuppmapnn0ub 14018 . . . 4 (((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
2622, 24, 25sylc 65 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
27 csbov 7455 . . . . . . . . . 10 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽)
28 csbfv 6931 . . . . . . . . . . 11 𝑥 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥)
2928oveqi 7423 . . . . . . . . . 10 (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3027, 29eqtri 2759 . . . . . . . . 9 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3130a1i 11 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽))
32 oveq 7416 . . . . . . . . 9 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
3332adantl 481 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
34 eqid 2736 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
352, 34mat0op 22362 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
36353adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
37363ad2ant1 1133 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
38 eqidd 2737 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (0g𝑅) = (0g𝑅))
3937, 38, 5, 7, 1ovmpod 7564 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4039ad4antr 732 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4131, 33, 403eqtrd 2775 . . . . . . 7 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))
4241exp31 419 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4342a2d 29 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4443ralimdva 3153 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4544reximdva 3154 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4626, 45mpd 15 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅)))
471, 16, 46mptnn0fsupp 14020 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  csb 3879   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cmpo 7412  m cmap 8845  Fincfn 8964   finSupp cfsupp 9378   < clt 11274  0cn0 12506  Basecbs 17233  0gc0g 17458  Ringcrg 20198  Poly1cpl1 22117  coe1cco1 22118   Mat cmat 22350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-pws 17468  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-psr 21874  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-ply1 22122  df-coe1 22123  df-mat 22351
This theorem is referenced by:  mply1topmatcllem  22746
  Copyright terms: Public domain W3C validator