| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrexilem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for cusgrexi 29423. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Ref | Expression |
|---|---|
| cusgrexilem1 | ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexi.p | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
| 2 | pwexg 5318 | . . 3 ⊢ (𝑉 ∈ 𝑊 → 𝒫 𝑉 ∈ V) | |
| 3 | 1, 2 | rabexd 5280 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑃 ∈ V) |
| 4 | resiexg 7848 | . 2 ⊢ (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 𝒫 cpw 4549 I cid 5513 ↾ cres 5621 ‘cfv 6486 2c2 12187 ♯chash 14239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-res 5631 |
| This theorem is referenced by: usgrexi 29421 cusgrexi 29423 cusgrexg 29424 structtousgr 29425 structtocusgr 29426 |
| Copyright terms: Public domain | W3C validator |