Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrexilem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cusgrexi 27347. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
Ref | Expression |
---|---|
usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
cusgrexilem1 | ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrexi.p | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
2 | pwexg 5252 | . . 3 ⊢ (𝑉 ∈ 𝑊 → 𝒫 𝑉 ∈ V) | |
3 | 1, 2 | rabexd 5208 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑃 ∈ V) |
4 | resiexg 7631 | . 2 ⊢ (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 {crab 3075 Vcvv 3410 𝒫 cpw 4498 I cid 5434 ↾ cres 5531 ‘cfv 6341 2c2 11743 ♯chash 13754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-id 5435 df-xp 5535 df-rel 5536 df-res 5541 |
This theorem is referenced by: usgrexi 27345 cusgrexi 27347 cusgrexg 27348 structtousgr 27349 structtocusgr 27350 |
Copyright terms: Public domain | W3C validator |