Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrexilem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cusgrexi 27810. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
Ref | Expression |
---|---|
usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
cusgrexilem1 | ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrexi.p | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
2 | pwexg 5301 | . . 3 ⊢ (𝑉 ∈ 𝑊 → 𝒫 𝑉 ∈ V) | |
3 | 1, 2 | rabexd 5257 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑃 ∈ V) |
4 | resiexg 7761 | . 2 ⊢ (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 𝒫 cpw 4533 I cid 5488 ↾ cres 5591 ‘cfv 6433 2c2 12028 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-res 5601 |
This theorem is referenced by: usgrexi 27808 cusgrexi 27810 cusgrexg 27811 structtousgr 27812 structtocusgr 27813 |
Copyright terms: Public domain | W3C validator |