| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrexilem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for cusgrexi 29370. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Ref | Expression |
|---|---|
| cusgrexilem1 | ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexi.p | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
| 2 | pwexg 5333 | . . 3 ⊢ (𝑉 ∈ 𝑊 → 𝒫 𝑉 ∈ V) | |
| 3 | 1, 2 | rabexd 5295 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑃 ∈ V) |
| 4 | resiexg 7888 | . 2 ⊢ (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 𝒫 cpw 4563 I cid 5532 ↾ cres 5640 ‘cfv 6511 2c2 12241 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-res 5650 |
| This theorem is referenced by: usgrexi 29368 cusgrexi 29370 cusgrexg 29371 structtousgr 29372 structtocusgr 29373 |
| Copyright terms: Public domain | W3C validator |