MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexilem1 Structured version   Visualization version   GIF version

Theorem cusgrexilem1 28963
Description: Lemma 1 for cusgrexi 28967. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexilem1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)

Proof of Theorem cusgrexilem1
StepHypRef Expression
1 usgrexi.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
2 pwexg 5375 . . 3 (𝑉𝑊 → 𝒫 𝑉 ∈ V)
31, 2rabexd 5332 . 2 (𝑉𝑊𝑃 ∈ V)
4 resiexg 7907 . 2 (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V)
53, 4syl 17 1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  {crab 3430  Vcvv 3472  𝒫 cpw 4601   I cid 5572  cres 5677  cfv 6542  2c2 12271  chash 14294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-res 5687
This theorem is referenced by:  usgrexi  28965  cusgrexi  28967  cusgrexg  28968  structtousgr  28969  structtocusgr  28970
  Copyright terms: Public domain W3C validator