MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexilem1 Structured version   Visualization version   GIF version

Theorem cusgrexilem1 29373
Description: Lemma 1 for cusgrexi 29377. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexilem1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)

Proof of Theorem cusgrexilem1
StepHypRef Expression
1 usgrexi.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
2 pwexg 5336 . . 3 (𝑉𝑊 → 𝒫 𝑉 ∈ V)
31, 2rabexd 5298 . 2 (𝑉𝑊𝑃 ∈ V)
4 resiexg 7891 . 2 (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V)
53, 4syl 17 1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  𝒫 cpw 4566   I cid 5535  cres 5643  cfv 6514  2c2 12248  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-res 5653
This theorem is referenced by:  usgrexi  29375  cusgrexi  29377  cusgrexg  29378  structtousgr  29379  structtocusgr  29380
  Copyright terms: Public domain W3C validator