MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexilem1 Structured version   Visualization version   GIF version

Theorem cusgrexilem1 27138
Description: Lemma 1 for cusgrexi 27142. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexilem1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)

Proof of Theorem cusgrexilem1
StepHypRef Expression
1 usgrexi.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
2 pwexg 5275 . . 3 (𝑉𝑊 → 𝒫 𝑉 ∈ V)
31, 2rabexd 5232 . 2 (𝑉𝑊𝑃 ∈ V)
4 resiexg 7610 . 2 (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V)
53, 4syl 17 1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  {crab 3146  Vcvv 3499  𝒫 cpw 4541   I cid 5457  cres 5555  cfv 6351  2c2 11684  chash 13683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-id 5458  df-xp 5559  df-rel 5560  df-res 5565
This theorem is referenced by:  usgrexi  27140  cusgrexi  27142  cusgrexg  27143  structtousgr  27144  structtocusgr  27145
  Copyright terms: Public domain W3C validator