![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5335. (Contributed by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rabexg 5332 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 1, 4 | eqeltrid 2838 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: rabex2 5335 zorn2lem1 10491 sylow2a 19487 evlslem6 21644 mhpaddcl 21694 mhpvscacl 21697 mretopd 22596 cusgrexilem1 28727 vtxdgf 28759 mntoval 32183 tocycval 32298 prmidlval 32586 evlsvvval 41183 evlsbagval 41186 mhpind 41214 stoweidlem35 44799 stoweidlem50 44814 stoweidlem57 44821 stoweidlem59 44823 subsaliuncllem 45121 subsaliuncl 45122 smflimlem1 45535 smflimlem2 45536 smflimlem3 45537 smflimlem6 45540 smfrec 45553 smfpimcclem 45571 smfsuplem1 45575 smfinflem 45581 smflimsuplem1 45584 smflimsuplem2 45585 smflimsuplem3 45586 smflimsuplem4 45587 smflimsuplem5 45588 smflimsuplem7 45590 fvmptrab 46048 prproropen 46224 |
Copyright terms: Public domain | W3C validator |