| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5299. (Contributed by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rabexg 5295 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 5 | 1, 4 | eqeltrid 2833 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: rabex2 5299 zorn2lem1 10456 sylow2a 19556 psrascl 21895 evlslem6 21995 mhpaddcl 22045 mhmcompl 22274 mhmcoaddmpl 22275 mretopd 22986 cusgrexilem1 29373 vtxdgf 29406 mntoval 32915 tocycval 33072 fxpval 33129 prmidlval 33415 isprimroot 42088 primrootsunit1 42092 unitscyglem1 42190 evlsvvval 42558 evlsbagval 42561 mhpind 42589 stoweidlem35 46040 stoweidlem50 46055 stoweidlem57 46062 stoweidlem59 46064 subsaliuncllem 46362 subsaliuncl 46363 smflimlem1 46776 smflimlem2 46777 smflimlem3 46778 smflimlem6 46781 smfrec 46794 smfpimcclem 46812 smfsuplem1 46816 smfinflem 46822 smflimsuplem1 46825 smflimsuplem2 46826 smflimsuplem3 46827 smflimsuplem4 46828 smflimsuplem5 46829 smflimsuplem7 46831 fvmptrab 47297 prproropen 47513 stgrvtx 47957 stgriedg 47958 gpgvtx 48038 gpgiedg 48039 |
| Copyright terms: Public domain | W3C validator |