| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5277. (Contributed by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rabexg 5273 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 5 | 1, 4 | eqeltrid 2835 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4549 |
| This theorem is referenced by: rabex2 5277 zorn2lem1 10387 sylow2a 19531 psrascl 21916 evlslem6 22016 mhpaddcl 22066 mhmcompl 22295 mhmcoaddmpl 22296 mretopd 23007 cusgrexilem1 29417 vtxdgf 29450 mntoval 32963 tocycval 33077 fxpval 33134 prmidlval 33402 isprimroot 42134 primrootsunit1 42138 unitscyglem1 42236 evlsvvval 42604 evlsbagval 42607 mhpind 42635 stoweidlem35 46081 stoweidlem50 46096 stoweidlem57 46103 stoweidlem59 46105 subsaliuncllem 46403 subsaliuncl 46404 smflimlem1 46817 smflimlem2 46818 smflimlem3 46819 smflimlem6 46822 smfrec 46835 smfpimcclem 46853 smfsuplem1 46857 smfinflem 46863 smflimsuplem1 46866 smflimsuplem2 46867 smflimsuplem3 46868 smflimsuplem4 46869 smflimsuplem5 46870 smflimsuplem7 46872 fvmptrab 47331 prproropen 47547 stgrvtx 47993 stgriedg 47994 gpgvtx 48082 gpgiedg 48083 |
| Copyright terms: Public domain | W3C validator |