| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5291. (Contributed by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rabexg 5287 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: rabex2 5291 zorn2lem1 10425 sylow2a 19533 psrascl 21921 evlslem6 22021 mhpaddcl 22071 mhmcompl 22300 mhmcoaddmpl 22301 mretopd 23012 cusgrexilem1 29419 vtxdgf 29452 mntoval 32954 tocycval 33080 fxpval 33137 prmidlval 33401 isprimroot 42074 primrootsunit1 42078 unitscyglem1 42176 evlsvvval 42544 evlsbagval 42547 mhpind 42575 stoweidlem35 46026 stoweidlem50 46041 stoweidlem57 46048 stoweidlem59 46050 subsaliuncllem 46348 subsaliuncl 46349 smflimlem1 46762 smflimlem2 46763 smflimlem3 46764 smflimlem6 46767 smfrec 46780 smfpimcclem 46798 smfsuplem1 46802 smfinflem 46808 smflimsuplem1 46811 smflimsuplem2 46812 smflimsuplem3 46813 smflimsuplem4 46814 smflimsuplem5 46815 smflimsuplem7 46817 fvmptrab 47286 prproropen 47502 stgrvtx 47946 stgriedg 47947 gpgvtx 48027 gpgiedg 48028 |
| Copyright terms: Public domain | W3C validator |