MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabexd Structured version   Visualization version   GIF version

Theorem rabexd 5310
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5311. (Contributed by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
rabexd.1 𝐵 = {𝑥𝐴𝜓}
rabexd.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
rabexd (𝜑𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem rabexd
StepHypRef Expression
1 rabexd.1 . 2 𝐵 = {𝑥𝐴𝜓}
2 rabexd.2 . . 3 (𝜑𝐴𝑉)
3 rabexg 5307 . . 3 (𝐴𝑉 → {𝑥𝐴𝜓} ∈ V)
42, 3syl 17 . 2 (𝜑 → {𝑥𝐴𝜓} ∈ V)
51, 4eqeltrid 2838 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-in 3933  df-ss 3943  df-pw 4577
This theorem is referenced by:  rabex2  5311  zorn2lem1  10510  sylow2a  19600  psrascl  21939  evlslem6  22039  mhpaddcl  22089  mhmcompl  22318  mhmcoaddmpl  22319  mretopd  23030  cusgrexilem1  29418  vtxdgf  29451  mntoval  32962  tocycval  33119  prmidlval  33452  isprimroot  42106  primrootsunit1  42110  unitscyglem1  42208  evlsvvval  42586  evlsbagval  42589  mhpind  42617  stoweidlem35  46064  stoweidlem50  46079  stoweidlem57  46086  stoweidlem59  46088  subsaliuncllem  46386  subsaliuncl  46387  smflimlem1  46800  smflimlem2  46801  smflimlem3  46802  smflimlem6  46805  smfrec  46818  smfpimcclem  46836  smfsuplem1  46840  smfinflem  46846  smflimsuplem1  46849  smflimsuplem2  46850  smflimsuplem3  46851  smflimsuplem4  46852  smflimsuplem5  46853  smflimsuplem7  46855  fvmptrab  47321  prproropen  47522  stgrvtx  47966  stgriedg  47967  gpgvtx  48047  gpgiedg  48048
  Copyright terms: Public domain W3C validator