![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5359. (Contributed by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rabexg 5355 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 1, 4 | eqeltrid 2848 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: rabex2 5359 zorn2lem1 10565 sylow2a 19661 psrascl 22022 evlslem6 22128 mhpaddcl 22178 mhmcompl 22405 mhmcoaddmpl 22406 mretopd 23121 cusgrexilem1 29474 vtxdgf 29507 mntoval 32955 tocycval 33101 prmidlval 33430 isprimroot 42050 primrootsunit1 42054 unitscyglem1 42152 evlsvvval 42518 evlsbagval 42521 mhpind 42549 stoweidlem35 45956 stoweidlem50 45971 stoweidlem57 45978 stoweidlem59 45980 subsaliuncllem 46278 subsaliuncl 46279 smflimlem1 46692 smflimlem2 46693 smflimlem3 46694 smflimlem6 46697 smfrec 46710 smfpimcclem 46728 smfsuplem1 46732 smfinflem 46738 smflimsuplem1 46741 smflimsuplem2 46742 smflimsuplem3 46743 smflimsuplem4 46744 smflimsuplem5 46745 smflimsuplem7 46747 fvmptrab 47207 prproropen 47382 |
Copyright terms: Public domain | W3C validator |