| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5280. (Contributed by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rabexg 5276 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: rabex2 5280 zorn2lem1 10390 sylow2a 19498 psrascl 21886 evlslem6 21986 mhpaddcl 22036 mhmcompl 22265 mhmcoaddmpl 22266 mretopd 22977 cusgrexilem1 29384 vtxdgf 29417 mntoval 32924 tocycval 33050 fxpval 33107 prmidlval 33374 isprimroot 42066 primrootsunit1 42070 unitscyglem1 42168 evlsvvval 42536 evlsbagval 42539 mhpind 42567 stoweidlem35 46016 stoweidlem50 46031 stoweidlem57 46038 stoweidlem59 46040 subsaliuncllem 46338 subsaliuncl 46339 smflimlem1 46752 smflimlem2 46753 smflimlem3 46754 smflimlem6 46757 smfrec 46770 smfpimcclem 46788 smfsuplem1 46792 smfinflem 46798 smflimsuplem1 46801 smflimsuplem2 46802 smflimsuplem3 46803 smflimsuplem4 46804 smflimsuplem5 46805 smflimsuplem7 46807 fvmptrab 47276 prproropen 47492 stgrvtx 47938 stgriedg 47939 gpgvtx 48027 gpgiedg 48028 |
| Copyright terms: Public domain | W3C validator |