Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5253. (Contributed by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rabexg 5250 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 1, 4 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: rabex2 5253 zorn2lem1 10183 sylow2a 19139 evlslem6 21201 mhpaddcl 21251 mhpvscacl 21254 mretopd 22151 cusgrexilem1 27709 vtxdgf 27741 mntoval 31162 tocycval 31277 prmidlval 31514 evlsbagval 40198 mhpind 40206 stoweidlem35 43466 stoweidlem50 43481 stoweidlem57 43488 stoweidlem59 43490 subsaliuncllem 43786 subsaliuncl 43787 smflimlem1 44193 smflimlem2 44194 smflimlem3 44195 smflimlem6 44198 smfrec 44210 smfpimcclem 44227 smfsuplem1 44231 smfinflem 44237 smflimsuplem1 44240 smflimsuplem2 44241 smflimsuplem3 44242 smflimsuplem4 44243 smflimsuplem5 44244 smflimsuplem7 44246 fvmptrab 44671 prproropen 44848 |
Copyright terms: Public domain | W3C validator |