![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5128. (Contributed by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rabexg 5125 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 1, 4 | syl5eqel 2887 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 {crab 3109 Vcvv 3437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-sep 5094 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 df-in 3866 df-ss 3874 |
This theorem is referenced by: rabex2 5128 zorn2lem1 9764 sylow2a 18474 evlslem6 19980 mhpaddcl 20021 mhpinvcl 20022 mhpvscacl 20024 mretopd 21384 cusgrexilem1 26904 vtxdgf 26936 tocycval 30397 stoweidlem35 41862 stoweidlem50 41877 stoweidlem57 41884 stoweidlem59 41886 subsaliuncllem 42182 subsaliuncl 42183 smflimlem1 42589 smflimlem2 42590 smflimlem3 42591 smflimlem6 42594 smfrec 42606 smfpimcclem 42623 smfsuplem1 42627 smfinflem 42633 smflimsuplem1 42636 smflimsuplem2 42637 smflimsuplem3 42638 smflimsuplem4 42639 smflimsuplem5 42640 smflimsuplem7 42642 fvmptrab 43007 prproropen 43152 |
Copyright terms: Public domain | W3C validator |