![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5347. (Contributed by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rabexg 5343 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 1, 4 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-pw 4607 |
This theorem is referenced by: rabex2 5347 zorn2lem1 10534 sylow2a 19652 psrascl 22017 evlslem6 22123 mhpaddcl 22173 mhmcompl 22400 mhmcoaddmpl 22401 mretopd 23116 cusgrexilem1 29471 vtxdgf 29504 mntoval 32957 tocycval 33111 prmidlval 33445 isprimroot 42075 primrootsunit1 42079 unitscyglem1 42177 evlsvvval 42550 evlsbagval 42553 mhpind 42581 stoweidlem35 45991 stoweidlem50 46006 stoweidlem57 46013 stoweidlem59 46015 subsaliuncllem 46313 subsaliuncl 46314 smflimlem1 46727 smflimlem2 46728 smflimlem3 46729 smflimlem6 46732 smfrec 46745 smfpimcclem 46763 smfsuplem1 46767 smfinflem 46773 smflimsuplem1 46776 smflimsuplem2 46777 smflimsuplem3 46778 smflimsuplem4 46779 smflimsuplem5 46780 smflimsuplem7 46782 fvmptrab 47242 prproropen 47433 stgrvtx 47857 stgriedg 47858 gpgvtx 47938 gpgiedg 47939 |
Copyright terms: Public domain | W3C validator |