Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5258. (Contributed by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rabexg 5255 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
5 | 1, 4 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: rabex2 5258 zorn2lem1 10252 sylow2a 19224 evlslem6 21291 mhpaddcl 21341 mhpvscacl 21344 mretopd 22243 cusgrexilem1 27806 vtxdgf 27838 mntoval 31260 tocycval 31375 prmidlval 31612 evlsbagval 40275 mhpind 40283 stoweidlem35 43576 stoweidlem50 43591 stoweidlem57 43598 stoweidlem59 43600 subsaliuncllem 43896 subsaliuncl 43897 smflimlem1 44306 smflimlem2 44307 smflimlem3 44308 smflimlem6 44311 smfrec 44323 smfpimcclem 44340 smfsuplem1 44344 smfinflem 44350 smflimsuplem1 44353 smflimsuplem2 44354 smflimsuplem3 44355 smflimsuplem4 44356 smflimsuplem5 44357 smflimsuplem7 44359 fvmptrab 44784 prproropen 44960 |
Copyright terms: Public domain | W3C validator |