MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabexd Structured version   Visualization version   GIF version

Theorem rabexd 5334
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5335. (Contributed by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
rabexd.1 𝐵 = {𝑥𝐴𝜓}
rabexd.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
rabexd (𝜑𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem rabexd
StepHypRef Expression
1 rabexd.1 . 2 𝐵 = {𝑥𝐴𝜓}
2 rabexd.2 . . 3 (𝜑𝐴𝑉)
3 rabexg 5332 . . 3 (𝐴𝑉 → {𝑥𝐴𝜓} ∈ V)
42, 3syl 17 . 2 (𝜑 → {𝑥𝐴𝜓} ∈ V)
51, 4eqeltrid 2838 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {crab 3433  Vcvv 3475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966
This theorem is referenced by:  rabex2  5335  zorn2lem1  10491  sylow2a  19487  evlslem6  21644  mhpaddcl  21694  mhpvscacl  21697  mretopd  22596  cusgrexilem1  28727  vtxdgf  28759  mntoval  32183  tocycval  32298  prmidlval  32586  evlsvvval  41183  evlsbagval  41186  mhpind  41214  stoweidlem35  44799  stoweidlem50  44814  stoweidlem57  44821  stoweidlem59  44823  subsaliuncllem  45121  subsaliuncl  45122  smflimlem1  45535  smflimlem2  45536  smflimlem3  45537  smflimlem6  45540  smfrec  45553  smfpimcclem  45571  smfsuplem1  45575  smfinflem  45581  smflimsuplem1  45584  smflimsuplem2  45585  smflimsuplem3  45586  smflimsuplem4  45587  smflimsuplem5  45588  smflimsuplem7  45590  fvmptrab  46048  prproropen  46224
  Copyright terms: Public domain W3C validator