| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5311. (Contributed by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rabexg 5307 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 5 | 1, 4 | eqeltrid 2838 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: rabex2 5311 zorn2lem1 10510 sylow2a 19600 psrascl 21939 evlslem6 22039 mhpaddcl 22089 mhmcompl 22318 mhmcoaddmpl 22319 mretopd 23030 cusgrexilem1 29418 vtxdgf 29451 mntoval 32962 tocycval 33119 prmidlval 33452 isprimroot 42106 primrootsunit1 42110 unitscyglem1 42208 evlsvvval 42586 evlsbagval 42589 mhpind 42617 stoweidlem35 46064 stoweidlem50 46079 stoweidlem57 46086 stoweidlem59 46088 subsaliuncllem 46386 subsaliuncl 46387 smflimlem1 46800 smflimlem2 46801 smflimlem3 46802 smflimlem6 46805 smfrec 46818 smfpimcclem 46836 smfsuplem1 46840 smfinflem 46846 smflimsuplem1 46849 smflimsuplem2 46850 smflimsuplem3 46851 smflimsuplem4 46852 smflimsuplem5 46853 smflimsuplem7 46855 fvmptrab 47321 prproropen 47522 stgrvtx 47966 stgriedg 47967 gpgvtx 48047 gpgiedg 48048 |
| Copyright terms: Public domain | W3C validator |