| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5291. (Contributed by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rabexg 5287 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: rabex2 5291 zorn2lem1 10425 sylow2a 19525 psrascl 21864 evlslem6 21964 mhpaddcl 22014 mhmcompl 22243 mhmcoaddmpl 22244 mretopd 22955 cusgrexilem1 29342 vtxdgf 29375 mntoval 32881 tocycval 33038 fxpval 33095 prmidlval 33381 isprimroot 42054 primrootsunit1 42058 unitscyglem1 42156 evlsvvval 42524 evlsbagval 42527 mhpind 42555 stoweidlem35 46006 stoweidlem50 46021 stoweidlem57 46028 stoweidlem59 46030 subsaliuncllem 46328 subsaliuncl 46329 smflimlem1 46742 smflimlem2 46743 smflimlem3 46744 smflimlem6 46747 smfrec 46760 smfpimcclem 46778 smfsuplem1 46782 smfinflem 46788 smflimsuplem1 46791 smflimsuplem2 46792 smflimsuplem3 46793 smflimsuplem4 46794 smflimsuplem5 46795 smflimsuplem7 46797 fvmptrab 47266 prproropen 47482 stgrvtx 47926 stgriedg 47927 gpgvtx 48007 gpgiedg 48008 |
| Copyright terms: Public domain | W3C validator |