| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabexd | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5296. (Contributed by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabexd.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabexd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rabexd | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexd.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 2 | rabexd.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rabexg 5292 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ V) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: rabex2 5296 zorn2lem1 10449 sylow2a 19549 psrascl 21888 evlslem6 21988 mhpaddcl 22038 mhmcompl 22267 mhmcoaddmpl 22268 mretopd 22979 cusgrexilem1 29366 vtxdgf 29399 mntoval 32908 tocycval 33065 fxpval 33122 prmidlval 33408 isprimroot 42081 primrootsunit1 42085 unitscyglem1 42183 evlsvvval 42551 evlsbagval 42554 mhpind 42582 stoweidlem35 46033 stoweidlem50 46048 stoweidlem57 46055 stoweidlem59 46057 subsaliuncllem 46355 subsaliuncl 46356 smflimlem1 46769 smflimlem2 46770 smflimlem3 46771 smflimlem6 46774 smfrec 46787 smfpimcclem 46805 smfsuplem1 46809 smfinflem 46815 smflimsuplem1 46818 smflimsuplem2 46819 smflimsuplem3 46820 smflimsuplem4 46821 smflimsuplem5 46822 smflimsuplem7 46824 fvmptrab 47293 prproropen 47509 stgrvtx 47953 stgriedg 47954 gpgvtx 48034 gpgiedg 48035 |
| Copyright terms: Public domain | W3C validator |