Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgrexi | Structured version Visualization version GIF version |
Description: An arbitrary set regarded as vertices together with the set of pairs of elements of this set regarded as edges is a simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
usgrexi | ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrexi.p | . . . 4 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
2 | 1 | usgrexilem 28096 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
3 | 1 | cusgrexilem1 28095 | . . . . 5 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
4 | opiedgfv 27666 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) = ( I ↾ 𝑃)) | |
5 | 3, 4 | mpdan 684 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) = ( I ↾ 𝑃)) |
6 | 5 | dmeqd 5847 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) = dom ( I ↾ 𝑃)) |
7 | opvtxfv 27663 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) = 𝑉) | |
8 | 3, 7 | mpdan 684 | . . . . . 6 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) = 𝑉) |
9 | 8 | pweqd 4564 | . . . . 5 ⊢ (𝑉 ∈ 𝑊 → 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) = 𝒫 𝑉) |
10 | 9 | rabeqdv 3418 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → {𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
11 | 5, 6, 10 | f1eq123d 6759 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ((iEdg‘〈𝑉, ( I ↾ 𝑃)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
12 | 2, 11 | mpbird 256 | . 2 ⊢ (𝑉 ∈ 𝑊 → (iEdg‘〈𝑉, ( I ↾ 𝑃)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2}) |
13 | opex 5409 | . . 3 ⊢ 〈𝑉, ( I ↾ 𝑃)〉 ∈ V | |
14 | eqid 2736 | . . . 4 ⊢ (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) = (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) | |
15 | eqid 2736 | . . . 4 ⊢ (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) = (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) | |
16 | 14, 15 | isusgrs 27815 | . . 3 ⊢ (〈𝑉, ( I ↾ 𝑃)〉 ∈ V → (〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph ↔ (iEdg‘〈𝑉, ( I ↾ 𝑃)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2})) |
17 | 13, 16 | mp1i 13 | . 2 ⊢ (𝑉 ∈ 𝑊 → (〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph ↔ (iEdg‘〈𝑉, ( I ↾ 𝑃)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2})) |
18 | 12, 17 | mpbird 256 | 1 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 {crab 3403 Vcvv 3441 𝒫 cpw 4547 〈cop 4579 I cid 5517 dom cdm 5620 ↾ cres 5622 –1-1→wf1 6476 ‘cfv 6479 2c2 12129 ♯chash 14145 Vtxcvtx 27655 iEdgciedg 27656 USGraphcusgr 27808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-hash 14146 df-vtx 27657 df-iedg 27658 df-usgr 27810 |
This theorem is referenced by: cusgrexi 28099 |
Copyright terms: Public domain | W3C validator |