| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrexi | Structured version Visualization version GIF version | ||
| Description: An arbitrary set regarded as vertices together with the set of pairs of elements of this set regarded as edges is a simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Ref | Expression |
|---|---|
| usgrexi | ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexi.p | . . . 4 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
| 2 | 1 | usgrexilem 29418 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 3 | 1 | cusgrexilem1 29417 | . . . . 5 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
| 4 | opiedgfv 28985 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) = ( I ↾ 𝑃)) | |
| 5 | 3, 4 | mpdan 687 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) = ( I ↾ 𝑃)) |
| 6 | 5 | dmeqd 5844 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) = dom ( I ↾ 𝑃)) |
| 7 | opvtxfv 28982 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) = 𝑉) | |
| 8 | 3, 7 | mpdan 687 | . . . . . 6 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) = 𝑉) |
| 9 | 8 | pweqd 4564 | . . . . 5 ⊢ (𝑉 ∈ 𝑊 → 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) = 𝒫 𝑉) |
| 10 | 9 | rabeqdv 3410 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → {𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 11 | 5, 6, 10 | f1eq123d 6755 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ((iEdg‘〈𝑉, ( I ↾ 𝑃)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
| 12 | 2, 11 | mpbird 257 | . 2 ⊢ (𝑉 ∈ 𝑊 → (iEdg‘〈𝑉, ( I ↾ 𝑃)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2}) |
| 13 | opex 5402 | . . 3 ⊢ 〈𝑉, ( I ↾ 𝑃)〉 ∈ V | |
| 14 | eqid 2731 | . . . 4 ⊢ (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) = (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) | |
| 15 | eqid 2731 | . . . 4 ⊢ (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) = (iEdg‘〈𝑉, ( I ↾ 𝑃)〉) | |
| 16 | 14, 15 | isusgrs 29134 | . . 3 ⊢ (〈𝑉, ( I ↾ 𝑃)〉 ∈ V → (〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph ↔ (iEdg‘〈𝑉, ( I ↾ 𝑃)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2})) |
| 17 | 13, 16 | mp1i 13 | . 2 ⊢ (𝑉 ∈ 𝑊 → (〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph ↔ (iEdg‘〈𝑉, ( I ↾ 𝑃)〉):dom (iEdg‘〈𝑉, ( I ↾ 𝑃)〉)–1-1→{𝑥 ∈ 𝒫 (Vtx‘〈𝑉, ( I ↾ 𝑃)〉) ∣ (♯‘𝑥) = 2})) |
| 18 | 12, 17 | mpbird 257 | 1 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ( I ↾ 𝑃)〉 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 𝒫 cpw 4547 〈cop 4579 I cid 5508 dom cdm 5614 ↾ cres 5616 –1-1→wf1 6478 ‘cfv 6481 2c2 12180 ♯chash 14237 Vtxcvtx 28974 iEdgciedg 28975 USGraphcusgr 29127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-vtx 28976 df-iedg 28977 df-usgr 29129 |
| This theorem is referenced by: cusgrexi 29421 |
| Copyright terms: Public domain | W3C validator |