MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexi Structured version   Visualization version   GIF version

Theorem usgrexi 28965
Description: An arbitrary set regarded as vertices together with the set of pairs of elements of this set regarded as edges is a simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 10-Nov-2021.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
usgrexi (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph)
Distinct variable groups:   𝑥,𝑉   𝑥,𝑃   𝑥,𝑊

Proof of Theorem usgrexi
StepHypRef Expression
1 usgrexi.p . . . 4 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
21usgrexilem 28964 . . 3 (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
31cusgrexilem1 28963 . . . . 5 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
4 opiedgfv 28534 . . . . 5 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ( I ↾ 𝑃))
53, 4mpdan 683 . . . 4 (𝑉𝑊 → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ( I ↾ 𝑃))
65dmeqd 5904 . . . 4 (𝑉𝑊 → dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = dom ( I ↾ 𝑃))
7 opvtxfv 28531 . . . . . . 7 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
83, 7mpdan 683 . . . . . 6 (𝑉𝑊 → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
98pweqd 4618 . . . . 5 (𝑉𝑊 → 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝒫 𝑉)
109rabeqdv 3445 . . . 4 (𝑉𝑊 → {𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
115, 6, 10f1eq123d 6824 . . 3 (𝑉𝑊 → ((iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
122, 11mpbird 256 . 2 (𝑉𝑊 → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2})
13 opex 5463 . . 3 𝑉, ( I ↾ 𝑃)⟩ ∈ V
14 eqid 2730 . . . 4 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)
15 eqid 2730 . . . 4 (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)
1614, 15isusgrs 28683 . . 3 (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ V → (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2}))
1713, 16mp1i 13 . 2 (𝑉𝑊 → (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2}))
1812, 17mpbird 256 1 (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  {crab 3430  Vcvv 3472  𝒫 cpw 4601  cop 4633   I cid 5572  dom cdm 5675  cres 5677  1-1wf1 6539  cfv 6542  2c2 12271  chash 14294  Vtxcvtx 28523  iEdgciedg 28524  USGraphcusgr 28676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-vtx 28525  df-iedg 28526  df-usgr 28678
This theorem is referenced by:  cusgrexi  28967
  Copyright terms: Public domain W3C validator