![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatexch1 | Structured version Visualization version GIF version |
Description: Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlatexch.l | β’ β€ = (leβπΎ) |
cvlatexch.j | β’ β¨ = (joinβπΎ) |
cvlatexch.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
cvlatexch1 | β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlatexch.l | . . 3 β’ β€ = (leβπΎ) | |
2 | cvlatexch.j | . . 3 β’ β¨ = (joinβπΎ) | |
3 | cvlatexch.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | 1, 2, 3 | cvlatexchb1 38660 | . 2 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) |
5 | cvllat 38652 | . . . . 5 β’ (πΎ β CvLat β πΎ β Lat) | |
6 | 5 | 3ad2ant1 1130 | . . . 4 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β πΎ β Lat) |
7 | simp23 1205 | . . . . 5 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β π β π΄) | |
8 | eqid 2724 | . . . . . 6 β’ (BaseβπΎ) = (BaseβπΎ) | |
9 | 8, 3 | atbase 38615 | . . . . 5 β’ (π β π΄ β π β (BaseβπΎ)) |
10 | 7, 9 | syl 17 | . . . 4 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β π β (BaseβπΎ)) |
11 | simp22 1204 | . . . . 5 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β π β π΄) | |
12 | 8, 3 | atbase 38615 | . . . . 5 β’ (π β π΄ β π β (BaseβπΎ)) |
13 | 11, 12 | syl 17 | . . . 4 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β π β (BaseβπΎ)) |
14 | 8, 1, 2 | latlej2 18403 | . . . 4 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β π β€ (π β¨ π)) |
15 | 6, 10, 13, 14 | syl3anc 1368 | . . 3 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β π β€ (π β¨ π)) |
16 | breq2 5142 | . . 3 β’ ((π β¨ π) = (π β¨ π) β (π β€ (π β¨ π) β π β€ (π β¨ π))) | |
17 | 15, 16 | syl5ibrcom 246 | . 2 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β ((π β¨ π) = (π β¨ π) β π β€ (π β¨ π))) |
18 | 4, 17 | sylbid 239 | 1 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β π β€ (π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 class class class wbr 5138 βcfv 6533 (class class class)co 7401 Basecbs 17142 lecple 17202 joincjn 18265 Latclat 18385 Atomscatm 38589 CvLatclc 38591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-proset 18249 df-poset 18267 df-plt 18284 df-lub 18300 df-glb 18301 df-join 18302 df-meet 18303 df-p0 18379 df-lat 18386 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 |
This theorem is referenced by: cvlatexch2 38663 cvlsupr2 38669 hlatexch1 38722 4atex 39403 cdleme20zN 39628 cdleme19a 39630 cdleme21b 39653 cdleme21c 39654 cdleme22g 39675 cdlemf1 39888 |
Copyright terms: Public domain | W3C validator |