Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatexch1 | Structured version Visualization version GIF version |
Description: Atom exchange property. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlatexch.l | ⊢ ≤ = (le‘𝐾) |
cvlatexch.j | ⊢ ∨ = (join‘𝐾) |
cvlatexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvlatexch1 | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlatexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | cvlatexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | cvlatexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | cvlatexchb1 36960 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄))) |
5 | cvllat 36952 | . . . . 5 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | |
6 | 5 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → 𝐾 ∈ Lat) |
7 | simp23 1209 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → 𝑅 ∈ 𝐴) | |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
9 | 8, 3 | atbase 36915 | . . . . 5 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → 𝑅 ∈ (Base‘𝐾)) |
11 | simp22 1208 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → 𝑄 ∈ 𝐴) | |
12 | 8, 3 | atbase 36915 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → 𝑄 ∈ (Base‘𝐾)) |
14 | 8, 1, 2 | latlej2 17780 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑄 ≤ (𝑅 ∨ 𝑄)) |
15 | 6, 10, 13, 14 | syl3anc 1372 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → 𝑄 ≤ (𝑅 ∨ 𝑄)) |
16 | breq2 5031 | . . 3 ⊢ ((𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄) → (𝑄 ≤ (𝑅 ∨ 𝑃) ↔ 𝑄 ≤ (𝑅 ∨ 𝑄))) | |
17 | 15, 16 | syl5ibrcom 250 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → ((𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
18 | 4, 17 | sylbid 243 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) → 𝑄 ≤ (𝑅 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 class class class wbr 5027 ‘cfv 6333 (class class class)co 7164 Basecbs 16579 lecple 16668 joincjn 17663 Latclat 17764 Atomscatm 36889 CvLatclc 36891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-proset 17647 df-poset 17665 df-plt 17677 df-lub 17693 df-glb 17694 df-join 17695 df-meet 17696 df-p0 17758 df-lat 17765 df-covers 36892 df-ats 36893 df-atl 36924 df-cvlat 36948 |
This theorem is referenced by: cvlatexch2 36963 cvlsupr2 36969 hlatexch1 37021 4atex 37702 cdleme20zN 37927 cdleme19a 37929 cdleme21b 37952 cdleme21c 37953 cdleme22g 37974 cdlemf1 38187 |
Copyright terms: Public domain | W3C validator |