Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatexch1 Structured version   Visualization version   GIF version

Theorem cvlatexch1 38662
Description: Atom exchange property. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlatexch.l ≀ = (leβ€˜πΎ)
cvlatexch.j ∨ = (joinβ€˜πΎ)
cvlatexch.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cvlatexch1 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ≀ (𝑅 ∨ 𝑄) β†’ 𝑄 ≀ (𝑅 ∨ 𝑃)))

Proof of Theorem cvlatexch1
StepHypRef Expression
1 cvlatexch.l . . 3 ≀ = (leβ€˜πΎ)
2 cvlatexch.j . . 3 ∨ = (joinβ€˜πΎ)
3 cvlatexch.a . . 3 𝐴 = (Atomsβ€˜πΎ)
41, 2, 3cvlatexchb1 38660 . 2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ≀ (𝑅 ∨ 𝑄) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄)))
5 cvllat 38652 . . . . 5 (𝐾 ∈ CvLat β†’ 𝐾 ∈ Lat)
653ad2ant1 1130 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝐾 ∈ Lat)
7 simp23 1205 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑅 ∈ 𝐴)
8 eqid 2724 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
98, 3atbase 38615 . . . . 5 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
107, 9syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
11 simp22 1204 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑄 ∈ 𝐴)
128, 3atbase 38615 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
1311, 12syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
148, 1, 2latlej2 18403 . . . 4 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ 𝑄 ≀ (𝑅 ∨ 𝑄))
156, 10, 13, 14syl3anc 1368 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑄 ≀ (𝑅 ∨ 𝑄))
16 breq2 5142 . . 3 ((𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄) β†’ (𝑄 ≀ (𝑅 ∨ 𝑃) ↔ 𝑄 ≀ (𝑅 ∨ 𝑄)))
1715, 16syl5ibrcom 246 . 2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ ((𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄) β†’ 𝑄 ≀ (𝑅 ∨ 𝑃)))
184, 17sylbid 239 1 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ≀ (𝑅 ∨ 𝑄) β†’ 𝑄 ≀ (𝑅 ∨ 𝑃)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  Basecbs 17142  lecple 17202  joincjn 18265  Latclat 18385  Atomscatm 38589  CvLatclc 38591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-proset 18249  df-poset 18267  df-plt 18284  df-lub 18300  df-glb 18301  df-join 18302  df-meet 18303  df-p0 18379  df-lat 18386  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648
This theorem is referenced by:  cvlatexch2  38663  cvlsupr2  38669  hlatexch1  38722  4atex  39403  cdleme20zN  39628  cdleme19a  39630  cdleme21b  39653  cdleme21c  39654  cdleme22g  39675  cdlemf1  39888
  Copyright terms: Public domain W3C validator